
5

ANOMALY DETECTION IN SERVER METRICS WITH USE OF
ONE-SIDED MEDIAN ALGORITHM

Szymon Zacher 1, Przemysław Ryba2

1 OVH SAS, Wrocław, Poland
szymon.zacher@corp.ovh.com

2 Department of Systems and Computer Networks
Wrocław University of Science and Technology, Wrocław, Poland

przemyslaw.ryba@pwr.edu,pl

Abstract
In this paper we consider the problem of anomaly detection over time series
metrics data took from one of corporate grade mail service cluster. We propose
the algorithm based on one-sided median concept and present some results of
experiments showing impact of parameters settings on algorithm performance.
In addition we present short description of classes of anomalies discovered in
monitored system. Proposed one-sided median based algorithm shows great
robustness and good detection rate and can be considered as possible simple
production ready solution.

Key words: anomaly detection, time series, one-sided median, server metrics

1 Introduction

Each system has to be monitored in order to gain certain level of stability and
robustness. In the world of fast data exchange, behavior of complicated sys-
tem can change rapidly during very small amount of time. Therefore not only
monitoring of system has to be performed, but also constant analysis of col-
lected data in order to detect each signs of instability or undefined behavior.
In traditional approach these activities are performed by specialized and
trained administrator who keeps track on incoming data and decide whether
any changes of system behavior are anomalous or not. Hopefully in modern
world of machine learning and data processing we do not have to rely com-
pletely on human work, we can craft a mechanism which can learn itself a
normal state of system and detect any deviations from such model.

The most demanding part of such mechanism is definitely anomaly detec-
tion algorithm which has to be very sensitive for any deviation, but also re-

22
10.1515/jacsm-2017-0001

JACSM 2017, Vol. 9, No. 1, pp. 5 -

6

Anomaly Detection in ...

sistant for random noise coexisting in every data stream. Such algorithm
should report anomaly with small rate of false positive alerts, because each
alert triggers some human action or at least creates a urge for specialist on
duty to check state of the infrastructure manually. Very important is also to
choose algorithms with small memory and computation power requirements
in order to create a possibility for simultaneous analysis of huge amount of
time series data.

2 Available algorithms

Large variety of algorithms for performing anomaly detection over streaming
time series data were presented in the literature. These algorithms can be as-
signed in one of 4 groups: cluster based methods, prediction models, density
based methods and profile description methods.

Cluster based methods such as k-means [1] or k-medoids [2] works by dis-
covering in historical data some clusters of probes and verifying whether cur-
rent value of metric can be fitted in one of discovered set. For creation of clus-
ter some parameters derived from probe has to be used. Example parameter
can be day of week or hour of measurement. Similar approach is presented in
works based on Support Vector Machine (SVM) [3] where a hyperplane sepa-
rating different clusters of probes is created. There was also successful at-
tempts to use Expectation-Maximization algorithm for profiling behavior of
Hadoop clusters [4].

Profile description methods relies on learning by algorithm normal shape
of analyzed time series and comparing collected data points with learned
shape. Good example is Tiresias algorithm [5] used for monitoring perfor-
mance of operating systems. Other solution can use specialized neural net-
work for maintaining shape of checked series [6].

Another approach is to take into consideration density or distance between
samples. In such methods all samples with number of neighbors below some
threshold are taken as an anomalies. To use such method in streaming data,
time sliding window for constant removal of old outdated samples, need to be
introduced. The main work related to this subject makes use of ISB structure
for storing neighborhood relation [7] or Yang algorithms which utilize some
properties of sliding window [8].

Prediction approach is based on creating a model which will predict future
value of data point and compare predicted value with real one. This compari-
son can be used to decide whether data point should be considered as anomaly
or not. There are multiple different ways for creating a predicting model.
Some examples of elementary ones are ARIMA model [9] and linear neural
network. There are also some works comparing use of multilayer perceptron
with linear neural network, naïve predictor and nearest cluster [10]. Other

7

Zacher S., Ryba P.

solution can be Gibbs probes [11] or weighted maximal likelihood estimation
[12].

3 Data streams source

All metrics series used in this work comes from one cluster of 70 mail servers
processing around 26 million messages per day. In this paper as server metrics
we will understand every time series containing some system specific varia-
bles such as local mail queue, number of concurrent connections or other sim-
ple system measurements like load average or size of free system memory.
All data was collected by collectd system monitor and was stored in whisper
datafiles. Samples was collected during five months period with granularity of
one point per minute.

4 Data streams classification

Based on characteristic of time series data gathered in monitored system we
distinguished following classes of time series:

4.1 Type I series – uniform series with rapid changes

In all Type I series seasonal effect does not exist or is negligibly small, addi-
tionally all existed anomaly have characteristic of rapid change with huge
amplitude. Those kind of series describe systems witch workload is time in-
dependent or metrics whose should have always have the same value in cor-
rectly working system. As example we can use time series describing number
of deferred e-mails on server inside mail infrastructure. Due to mail system
specification such queue should be fixed at zero and each difference from this
value can be considered as anomaly.

8

Anomaly Detection in ...

Figure 1. Type I series with stable fixed value

Other example of slightly more noisy series can be metric of active pro-
cessed messages. Seasonality of such data is definitely small, therefore it can
be considered as constant series with some random noise.

Figure 2. Type I series with very small seasonal effect

Those type of time series are characterized by high local consistency and
complete time independency. Because of that there is no need to consider
wider context of data. Each algorithm can just work on most recent examples
and detect only local outliers.

9

Zacher S., Ryba P.

4.2 Type II series – uniform series with slow changes

Very interesting example of time series is uniform and time independent se-
ries with very slow growing abnormal value. Such series can for example
describe deferred message queue on output nodes caused generally by failure
on the remote service providers side. Traffic to single provider is too small to
cause rapid grow of deferred queue, but because of the long term characteris-
tic of such failure, constant grow of queue on output nodes, can be possible.

Figure 3. Type II series with slow growing anomaly

In production environment we cannot find any constant normal value for
such metrics. This fact makes analysis much harder. Hopefully all series of
this type have high level of local consistency.

4.3 Type III series – seasonal

Seasonal series are the most common ones, because they can describe typical
standard working system with time dependent workload. Generally series of
this kind have different average depending of the time of the day and day of
the week. Let the example be number of messages originating from one of the
input nodes.

10

Anomaly Detection in ...

Figure 4. Type III seasonal series

Characteristic daily repeating pattern with two maximums around 11 and
16 o`clock can be seen. In addition to that there is possibility to observe gen-
eral decrease of samples values during weekend or free days. It’s worth to
stressed out that the value of anomalous points at midnight 4th of the march is
lower than normal workload during rush hours. The best algorithm should
take time of measurement into consideration. Existence of local consistency in
all series of this type is very promising. This means that all outliers points are
anomalies. Thanks to that property there is possibility to use local consistency
algorithm for anomaly detection.

4.4 Type IV series – seasonal not uniform series

Type IV of time series is a simple derivation of Type III series without local
consistency. Loss of consistency can be caused by some repeating event
which resulted in creation of peaks in series data. It is very important to note
that such events are not anomalous and there is no need to generate alert for
each occurrence. Good example of Type IV series is number of concurrent
connections gathered from infrastructure input nodes.

11

Zacher S., Ryba P.

Figure 5. Type IV seasonal series with series of peaks

There is an easily distinguishable seasonal trend known from Type III se-
ries. Main difference is periodical rapid increase of value in every 15 minutes
block, such points will be for sure marked as outlier but they are not an anom-
alies. Loss of local uniformity forces algorithm to consider wider context of
data points in order to detect places where outlying point should occur. All of
that makes this type of metric harder to analysis than Type III.

5 One sided median

The one sided median algorithm is based on quite simple prediction model,
main assumption is that the median of series is almost always constant during
single chosen time window. Described algorithm is based on work of S. Basu
and M. Meckesheimer [13].

Consider time series Y containing ordered data points ��, �� �����, ��.
For every time � we can define a �-length time window which will contains
points

��
��� � �����, ������ ����� �, (1)

12

Anomaly Detection in ...

We can also define series of differences between following points in time
window let’s denote

, (2)

than such series can be written as

, (3)

Let’s denote the median of as and the median of as . Finally
in one sided median prediction value of data point at time is estimated as

, (4)

and the error of estimation is calculated using equation

, (5)

and compared to some threshold value . If the value of error is greater than
threshold algorithm assume that the point is an anomaly and should be
marked. Figure 6 shows concept of the current algorithm.

Figure 6. One sided median algorithm

13

Zacher S., Ryba P.

There is also variant of algorithm which does not utilize differential mod-
ule . In such approach value of data point can be estimated simply as me-
dian value:

. (6)

Threshold value of has to be chosen very carefully and needs to match to
the variability level of each series. Therefore we try to make it independent of
series characteristic by using median absolute deviation parameter of time
window. In our approach we assume that

, (7)

where n is the value of allowed multiplication of MAD. Median absolute
deviation parameters is robust measurement of variability of given sample and
can be defined as shown in equation (4).

, (8)

6 Performance evaluation

6.1 Test procedure

To check efficiency and accuracy of proposed anomaly detection method we
performed several experiments. Impact of presence of differential module,
window length and threshold value on anomaly detection system performance
were tested. Experiments were performed with all types of data series. We
used number of detected anomalies as a metric of sensitivity. Each test result
was manually reviewed and assessed against anomaly detection rate and num-
ber false positive alerts.

6.2 Presence of differential module

Evaluation of both models with (4) and without differential module (6) on the
same sample series has shown that use of differential module results in huge
increase in number of points detected as anomalies. Results of experiments
are shown in Table 1. For the evaluation we used the threshold value as three
times of the MAD parameter, and window length of 60 probes.

14

Anomaly Detection in ...

Table 1. Influence of differential module presence on number of points detected as
anomalies

Series Type Differential module
present

Differential module
absent

Type I 332 332
Type II 34582 34490
Type III 56256 9518
Type IV 68422 12043

However when we rely on manual assessment of results, introduction of

differential module resulted in extraordinary increase of false positive rate.
Example results are shown below on Figure 7 and Figure 8.

Figure 7. Estimation made by model with differential module enabled

15

Zacher S., Ryba P.

Figure 8. Estimation made by model with differential module disabled

Adding difference of following data points made median based estimation
very variable, which lead to decrease of prediction accuracy. To show effect
of this loss, test over a single generated series was performed. Evaluated se-
ries consists of stable value of zero with some random noise without any
anomaly. Therefore estimated median should be fixed at the level of 0. As we
may see in the Figure 9 estimated median has huge amplitude and vary a lot
from the real median value.

Figure 9. Effect of differential module on linear series with random noise

16

Anomaly Detection in ...

6.3 Sliding window length

Length of sliding window is key factor for gaining good prediction rate. Us-
age of small window can increase adaptivity of algorithm but will effect in
increase of false positive rate. In the Table 2 number of points described as
anomalies in function of window length and series type is presented. The
threshold value was fixed at the level of three times of MAD value.

Table 2. Influence of time window length on number of points detected as anomalies

Series Type Window length

15 30 45 60 75 90

Type I 385 328 364 332 327 329
Type II 34903 31584 33208 34490 35627 36233
Type III 10779 10140 9824 9518 9480 9687
Type IV 12214 11946 12040 12043 12210 12349

Series Type Window length

105 120 135 150 165 180

Type I 333 312 312 312 312 312
Type II 36861 37036 37378 38077 38696 39515
Type III 9841 9997 10233 10825 11528 12349
Type IV 12566 12708 12905 13249 13590 13993

Series Type Window length

210 240 270 300

Type I 312 312 312 312
Type II 40493 41284 41931 42647
Type III 14078 15828 17289 18414
Type IV 14986 16022 17193 18263

In the Figures 10 and 11 algorithm reaction on anomaly is presented, cho-

sen time window sizes are 15 and 60 respectively.

17

Zacher S., Ryba P.

Figure 10. Anomaly detection with time window of 15 probes

Figure 11. Anomaly detection with time window of 60 probes

For the small time window very fast adaptation of algorithm to anomalous
level of metrics can be observed. Using larger size time window results in
increasing of model stability.

However, time window can’t be increased too much because at some point
it will decrease a model accuracy, especially in time dependent time series
such as type III and IV. On Figure 12 the same fragment of time series is pre-
sented, but this time window length is set to 360 points.

18

Anomaly Detection in ...

Figure 12. Too big time window

We can see decrease of prediction accuracy caused by not looking up to
local trends of series. Estimated median value seems to be delayed in relation
with real value. Loss of accuracy resulted in increase of false positive rate.

6.4 Threshold value

With the increase of threshold value used as multiply of MAD value, number
of points described as anomalies start to decrease. Results of several test are
shown in Table 3. Tests were performed with the window length of 60 probes.

19

Zacher S., Ryba P.

Table 2. Influence of error threshold value on number of points detected as anomalies

Series Type Threshold value

1 2 3 4 5 6

Type I 360 357 332 318 313 299
Type II 63697 43731 34490 29214 25668 23033
Type III 57995 19559 9518 5163 2950 1868
Type IV 57604 20701 12043 8851 7299 6342

Series Type Threshold value

7 8

Type I 290 289
Type II 21048 19583
Type III 1200 880
Type IV 5664 5131

On figures 13 and 14 two different threshold values are shown (3*MAD

and 6*MAD).

Figure 13. Threshold value set up to 3*MAD

20

Anomaly Detection in ...

Figure 14. Threshold value set up to 6*MAD

We can see that increase of threshold results in decrease of sensitivity,
however even use of 6*MAD level can properly detect critical anomalies.

6.5 Type of series

Usage of one sided median algorithm on all of analyzed Type I series showed
that all existing anomalies can be easily discovered. Unfortunately one sided
median algorithm can’t be used to evaluate type II series. Two factor makes
this kind of analysis really hard:

− Slow, gradual growth of anomaly is treated as a drift in data series values
− Presence of high level noise in the form of peaks determined by the

source of this data series type.

High noise level is determined by the source of this series type. In some
cases algorithm even mark good data points as anomalies which was caused
by stabilized linear growing trend of anomaly.

It is really interesting that it is possible to discover anomalies in most
common type III series with very good detection rate and small enough false
positive rate by using well fitted sets of parameter. On the other hand use of
one sided median algorithm over type IV series is limited due to marking
every inconsistency as anomaly.

21

Zacher S., Ryba P.

8 Conclusions

One sided median method of detection anomalies perform very well on
metrics gathered from mail cluster. Based on the performed tests we can con-
clude, that this method is good choice for simple analysis of all kind uniform
time series with rapid anomalies. We have shown that median absolute devia-
tion (MAD) can be used as one factor of threshold value and allows model to
be independent from series variability.

Results show also that use of differential module is not a good option for
production series of metrics, as its introducing additional noise. It is possible
that differential module can increase accuracy in series with constant visible
trend such as constantly growing linear series.

Size of time window has to be correctly set to contain data points with low
variance over median value. In case of Type III series appropriate value of
this parameter is approximately 60 data points. We need to emphasis that in
series of Type I time window length has no notable influence on the system
performance. Number of points described as anomalies was similar between
test results.

Threshold value has to be set as a compromise between sensitivity and
false positive rate. For typical monitoring usage threshold value as three times
the value of the parameter MAD should be enough to gain certain level of
accuracy with good level of detection. For detecting only critical anomalies
with very small level of false positive multiplication of 6 should be used.

This work shows that automatic anomaly detection over server metrics is
possible even by using simple algorithms. One sided median is good enough
to be used in production environment with success making administrators job
simpler and systems more resistant to unpredicted failures.

References

1. Nairac A., Townsend N., Carr R., King S., Cowley P., Tarassenko L., 1999, A
System for the Analysis of Jet Engine Vibration Data Integrated Computer Aided
Engineering, Boulder, 6, 1, pp. 53–66.

2. Budalakoti S., Srivastava A., Akella R., Turkov E., 2006, Anomaly Detection in
Large Sets of High-dimensional Symbol Sequences, Tech. Rep. NASA TM-
2006-214553, NASA Ames Research Center

3. Eskin E., Arnold A., Prerau M., Portnoy L., Stolfo S., 2002, A Geometric
Framethe Analysis of Jet Engine Vibration Data Integrated Computer Aided
Engineering, Boulder, 6, 1, pp. 53–66.

22

Anomaly Detection in ...

4. Pan X., Tan J., Kavulya S., Gandhi R., Narasimhan P., 2010, Ganesha: Black-
Box Diagnosis of MapReduce Systems, SIG-METRICS Performance Evaluation
Review, 37, 3, pp. 8–13

5. Williams A.W., Pertet S. M., Narasimhan P., 2007, Tiresias: Black-box Failure
Prediction in Distributed Systems, 21st Intl. Parallel and Distributed Processing
Symposium (IPDPS), pp. 1-8

6. Silvestri G., Verona F., Innocenti M., Napolitano M., 1994, Fault Detection us-
ing Neural Networks, IEEE Intl. Conf. on Neural Networks, pp. 3796–3799

7. Angiulli F., Fassetti F., 2007, Detecting Distance-based Outliers in Streams of
Data, 16th ACM Conf. on Information and Knowledge Management (CIKM),
pp 811-820

8. Yang D., Rundensteiner E. A., Ward M.O., 2009, Neighbor based Pattern De-
tection for Windows over Streaming Data, 12th Intl. Conf. On Extending Data-
base Technology: Advances in Database Technology (EDBT), pp 529-540

9. Tsay R.S., Pena D., Pankratz A.E., 2000, Outliers in Multivariate Time Series,
Biometrika, 87, 4, pp. 789-804

10. Hill D. J., Minsker B. S., 2010, Anomaly Detection in Streaming Environmental
Sensor Data: A Data-driven Modeling Approach, Environmental Modelling and
Software, 25, 9, pp. 1014–1022

11. Justel A., Pena D., Tsay R.S, 2001, Detection of Outlier Patches in Autoregres-
sive Time Series, Statistica Sinica, 11, 3, pp. 651-674

12. Luceno A., 1998, Detecting Possibly Non-Consecutive Outliers in Industrial
Time Series, Journal of the Royal Statistical Society. Series B (Statistical Met-
hodology), 60, 2, pp. 259-310

13. Basu S., Meckesheimer M., 2007, Automatic Outlier Detection for Time Series:
An Application to Sensor Data, Knowledge and Information Systems – Special
Issue on Mining Low-Quality Data, 11, 2, pp. 137-154

JACSM 2017, Vol. 9, No. 1, pp. 23 -

23

FRIEDMAN AND WILCOXON EVALUATIONS COMPARING
SVM, BAGGING, BOOSTING, K-NN AND DECISION TREE

CLASSIFIERS

Vinai George Biju1, Prashanth CM2

1 Department of Computer Science and Engineering
Christ University Faculty of Engineering, India

vinai.george@christuniversity.in
2 Department of Computer Science and Engineering

Sapthgiri College of Engineering, India

Abstract
This paper describes a number of experiments to compare and validate the
performance of machine learning classifiers. Creating machine learning models
for data with wide varieties has huge applications in predictive modelling
across multiple domain of science. This work reviews state of the art techniques
in machine learning classifiers methods with several extent of magnitude in
statistics and key findings that will be helpful in establishing best
methodological practices for class predictions. Comprehensive comparative
review analysis with statistical validations for various machine learning
algorithm for SVM, Bagging, Boosting, Decision Trees and Nearest
Neighborhood algorithm on multiple data sets is carried out. Focus on the
statistical analysis of the results using Friedman-Test and Wilcoxon Test as
well as other interpretative metrics like classification rate, ROC, F-measure are
evaluated to benchmark results.

Key words: bagging, boosting, SVM, KNN, decision tree

1 Introduction

Given the different types of input instances with output labels, predicting the
output using machine learning tasks has been challenging for quite some time.
The newly developed machine learning methods follows a rigorous criterion
of analysis against previous approaches to verify its correctness of
predictions. The results rely on choosing possibilities between output cases
and empirical comparisons measuring the performance derived from the
configuration parameters of the experiments. In order to set up on a firm
conclusion on a radical learning technique, the statistical validation of

47
10.1515/jacsm-2017-0002

24

Friedman and Wilcoxon Evaluations Comparing ...

produced results is a requisite in current times. Many approaches have been
proposed in present-years contributing towards optimized and transformed
features and there by using well known machine learning techniques with out
assuming independence or relationships among attributes making
interpretable, dense and accurate learning models. Classification is mostly
beneficial when the examples collected in a database can be used as the
foundation for making future decisions; e.g., for judging risks for credit,
analysing scientific data and for diagnosis of diseases taking biological data.
Scientists have established extensive variety of classification algorithms
namely decision tree, nearest neighbor, support vector machines, boosting,
and bagging.

The comparative study should perhaps be done with utmost significance
using a statistically adequate background. Pattern recognition with enhanced
feature selection assigning groups or classes to data instances could be
executed for either models that are based on supervised classification or
models that extract relationships between objects and its properties namely
clustering or unsupervised classification.

Even though plenty of work can be found in literature that describes more
appropriate classifiers for particular tasks, only limited studies reflect a more
systematic statistical analysis with regards to their performance. The typical
initial outcome of this work is to find the performance of various machine
learning classifiers under various parameter settings taking detailed input
values from multiple data sets.

Evaluating classifiers giving priority to maximum accuracy alone under
different classifier parameters for specific tuned data and values is usually not
the best approach, because for a different dataset the result would be different
for most of the cases. Since the key study in this work is evaluation of
practical results comparing classifiers, the outcome of classifiers with
generative models are compared to the discriminative models. Specifically the
effect of varied data sets on average classifier classification results performed
with wide-ranging experiments are explored. The behavior of feature
combination and class labels can be briefly explained using the framework
with some of the machine learning techniques like kNN, SVM, Boosted and
Bagged Trees. Data scientists typically investigate with different classifiers
taking varied features and data sets to compare with specialized guidelines. It
should be dealt with caution that the detailed experiments carried out, not
applying specific statistical tests could lead to invalid inferences. The degree
to which the contending classifiers, disagree or agree on output class values
deliver evidence about reliability of classification output over perceived input
data sets. The fraction of class instances that are positive and correctly
predicted is indicated by classifier sensitivity and likewise specificity is the
fraction of negative class instances that are correctly predicted [1].

25

Vinai George Biju, Prashanth CM

Performances are evaluated for CHAID, neural network and logistic
regression for imbalanced data set executed in an actual marketing application
of a bank in [2]. The classifier performance for k-NN, Naive Bayes, SVM,
LDA and Decision Tree are evaluated using characteristics including
specificity, sensitivity, classification accuracy, computational time and kappa
in [3]. Analysis of ROC towards results in machine learning, describing
various challenges and providing concise substitute methods to ROC analysis
like Lift chart, Calibration chart, Detection error trade-off curve had been
discussed in [4]. Sentiment analysis and opinion mining for business analytics
and market research scrutinizing word-of-mouth data for movie reviews are
explored using support vector machines, neural network and bayesian
decision tree in [5]. In [6] the influence of lexically normalized, naive, and
semantic features on the performance of classifier for various diseases have
been assessed using support vector machines. Statistical tests for evaluations
of machine learning algorithms on several data sets using Wilcoxon signed
ranks test and Friedman test is detailed in [7] The raisins superiority for
agriculture is graded by means of machine learning techniques after selecting
the best features using feature selection based on correlation in [8]. Data from
wireless kinematic sensors for the job of physical movement recognition is
taken for comparing the performance of AdaBoostM1 as the classifier of meta
level with base level classifier C4.5 Graft in [9]. Investigating classifier
performance with optimization to categorize non-randomized readings and
classification of biomedical quotations for text selection using organized
reviews are studied in [10]. Classifiers namely Support vector machines,
Conditional Random fields and Latent Dynamic conditional random fields are
compared for user intention understanding in analysing web search engines
was shown in [11]. Soil profiles were analysed, sampled, selected and
predicted for taxonomic soil class after investigating the classification power
of data mining classifiers in [12]. Chi-Square Methods and R- Square tech-
niques were used for high dimensional curve fitting using machine learning in
[36]. A review was carried out for forecasting the share trading from the stock
market database using state of the art machine learning in [35].

2 Support vector machines with kernel evaluation

To classify instances of two classes using SVM, the input data x is mapped to
higher dimensional space geometry ()S x and then devising an optimal
hyperplane denoted by ꞏ 0w S b  separating the two classes [13]. The func-
tion is expressed as:

(1)

Evaluating classifiers giving priority to maximum accuracy alone under different classifier parameters for
specific tuned data and values is usually not the best approach, because for a different dataset the result
would be different for most of the cases. Since the key study in this work is evaluation of practical results
comparing classifiers, the outcome of classifiers with generative models are compared to the discriminative
models. Specifically the effect of varied data sets on average classifier classification results performed with
wide-ranging experiments are explored. The behavior of feature combination and class labels can be briefly
explained using the framework with some of the machine learning techniques like kNN, SVM, Boosted and
Bagged Trees. Data scientists typically investigate with different classifiers taking varied features and data
sets to compare with specialized guidelines. It should be dealt with caution that the detailed experiments
carried out, not applying specific statistical tests could lead to invalid inferences. The degree to which the
contending classifiers, disagree or agree on output class values deliver evidence about reliability of
classification output over perceived input data sets. The fraction of class instances that are positive and
correctly predicted is indicated by classifier sensitivity and likewise specificity is the fraction of negative
class instances that are correctly predicted [1].

Performances are evaluated for CHAID, neural network and logistic regression for imbalanced data
set executed in an actual marketing application of a bank in [2]. The classifier performance for k-NN, Naive
Bayes, SVM, LDA and Decision Tree are evaluated using characteristics including specificity, sensitivity,
classification accuracy, computational time and kappa in [3]. Analysis of ROC towards results in machine
learning, describing various challenges and providing concise substitute methods to ROC analysis like Lift
chart, Calibration chart, Detection error trade-off curve had been discussed in [4]. Sentiment analysis and
opinion mining for business analytics and market research scrutinizing word-of-mouth data for movie
reviews are explored using support vector machines, neural network and bayesian decision tree in [5]. In [6]
the influence of lexically normalized, naive, and semantic features on the performance of classifier for
various diseases have been assessed using support vector machines. Statistical tests for evaluations of
machine learning algorithms on several data sets using Wilcoxon signed ranks test and Friedman test is
detailed in [7] The raisins superiority for agriculture is graded by means of machine learning techniques after
selecting the best features using feature selection based on correlation in [8]. Data from wireless kinematic
sensors for the job of physical movement recognition is taken for comparing the performance of
AdaBoostM1 as the classifier of meta level with base level classifier C4.5 Graft in [9]. Investigating
classifier performance with optimization to categorize non-randomized readings and classification of
biomedical quotations for text selection using organized reviews are studied in [10]. Classifiers namely
Support vector machines, Conditional Random fields and Latent Dynamic conditional random fields are
compared for user intention understanding in analysing web search engines was shown in [11]. Soil profiles
were analysed, sampled, selected and predicted for taxonomic soil class after investigating the classification
power of data mining classifiers in [12]. Chi-Square Methods and R- Square techniques were used for high
dimensional curve fitting using machine learning in [36]. A review was carried out for forecasting the share
trading from the stock market database using state of the art machine learning in [35].

2. SUPPORT VECTOR MACHINES WITH KERNEL EVALUATION
To classify instances of two classes using SVM, the input data x is mapped to higher

dimensional space geometry ()S xφ= and then devising an optimal hyperplane denoted by · 0w S b− =
separating the two classes [13]. The function is expressed as:

() , () (1)f x w x b= Φ +

which acts as decision boundary and is evaluated thereby using the function Φ that maps x to S space
which is in higher dimension [14]. The distance is maximized for the set of data points ()kxΦ that are
consistent on the training set with hyperplane characterized by (,)w b . The vector w is represented by:

*

1
()

m

k k k
k

w y xα
=

= Φ∑ and the quadratic optimization problem:

,
1 ,

1 1max () (,) (2)
2

m m

k k l k l k l k l
k k l

W y y K x x
Cα

α α α α δ
=

 = − + 
 

∑ ∑
is solved through *

kα [15].

26

Friedman and Wilcoxon Evaluations Comparing ...

which acts as decision boundary and is evaluated thereby using the func-
tion  that maps x to S space which is in higher dimension [14]. The dis-
tance is maximized for the set of data points ()kx that are consistent on the
training set with hyperplane characterized by (,)w b . The vector w is represent-

ed by: *

1
()

m

k k k
k

w y x


  and the quadratic optimization problem:

(2)

is solved through *
k [15].

Table 1. Classification Output Parametrics for Support Vector Machine.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.69 0.36 0.6 0.41 0.64 0.5 0.54 63.71

BreastCancer 0.11 0.3 0.55 0.67 0.7 0.68 0.63 69.58
Con-

tactLenses 0.1 0.31 0.41 0.69 0.71 0.7 0.65 70.83

GermanCredit 1.54 0.25 0.5 0.74 0.75 0.74 0.68 75.1

PimaDiabetes 0.03 0.23 0.48 0.77 0.77 0.76 0.7 77.34

Glass 0.81 0.21 0.32 0.52 0.56 0.52 0.48 56.07

Hypothyroid 7.73 0.26 0.32 0.89 0.94 0.91 0.88 93.61

Ionosphere 0.36 0.11 0.34 0.89 0.89 0.88 0.83 88.6

Iris 0.13 0.23 0.29 0.96 0.96 0.96 0.94 96

Labor 0.21 0.11 0.32 0.89 0.9 0.89 0.85 89.47

Soybean 1.81 0.09 0.21 0.94 0.94 0.94 0.91 93.85

Vote 0.36 0.04 0.2 0.96 0.96 0.96 0.94 96.09

Weather 0.05 0.43 0.65 0.53 0.57 0.54 0.54 57.14

Segment 0.59 0.21 0.3 0.92 0.92 0.92 0.88 91.93

Weather 0.05 0.43 0.65 0.53 0.57 0.54 0.54 57.14

Segment 0.59 0.21 0.3 0.92 0.92 0.92 0.88 91.93

The solution to the above problem is established using the Lagrangian

formulation and it is shown that
1

0m
k kk

y 


 and , 0k k  , where ,k l
denotes Kronecker symbol with (,) (), ()k l k lK x x x x   representing the
Gram matrix data set used for training. The predicted class label for each x
can be computed after examining the sign of ()f x .

Evaluating classifiers giving priority to maximum accuracy alone under different classifier parameters for
specific tuned data and values is usually not the best approach, because for a different dataset the result
would be different for most of the cases. Since the key study in this work is evaluation of practical results
comparing classifiers, the outcome of classifiers with generative models are compared to the discriminative
models. Specifically the effect of varied data sets on average classifier classification results performed with
wide-ranging experiments are explored. The behavior of feature combination and class labels can be briefly
explained using the framework with some of the machine learning techniques like kNN, SVM, Boosted and
Bagged Trees. Data scientists typically investigate with different classifiers taking varied features and data
sets to compare with specialized guidelines. It should be dealt with caution that the detailed experiments
carried out, not applying specific statistical tests could lead to invalid inferences. The degree to which the
contending classifiers, disagree or agree on output class values deliver evidence about reliability of
classification output over perceived input data sets. The fraction of class instances that are positive and
correctly predicted is indicated by classifier sensitivity and likewise specificity is the fraction of negative
class instances that are correctly predicted [1].

Performances are evaluated for CHAID, neural network and logistic regression for imbalanced data
set executed in an actual marketing application of a bank in [2]. The classifier performance for k-NN, Naive
Bayes, SVM, LDA and Decision Tree are evaluated using characteristics including specificity, sensitivity,
classification accuracy, computational time and kappa in [3]. Analysis of ROC towards results in machine
learning, describing various challenges and providing concise substitute methods to ROC analysis like Lift
chart, Calibration chart, Detection error trade-off curve had been discussed in [4]. Sentiment analysis and
opinion mining for business analytics and market research scrutinizing word-of-mouth data for movie
reviews are explored using support vector machines, neural network and bayesian decision tree in [5]. In [6]
the influence of lexically normalized, naive, and semantic features on the performance of classifier for
various diseases have been assessed using support vector machines. Statistical tests for evaluations of
machine learning algorithms on several data sets using Wilcoxon signed ranks test and Friedman test is
detailed in [7] The raisins superiority for agriculture is graded by means of machine learning techniques after
selecting the best features using feature selection based on correlation in [8]. Data from wireless kinematic
sensors for the job of physical movement recognition is taken for comparing the performance of
AdaBoostM1 as the classifier of meta level with base level classifier C4.5 Graft in [9]. Investigating
classifier performance with optimization to categorize non-randomized readings and classification of
biomedical quotations for text selection using organized reviews are studied in [10]. Classifiers namely
Support vector machines, Conditional Random fields and Latent Dynamic conditional random fields are
compared for user intention understanding in analysing web search engines was shown in [11]. Soil profiles
were analysed, sampled, selected and predicted for taxonomic soil class after investigating the classification
power of data mining classifiers in [12]. Chi-Square Methods and R- Square techniques were used for high
dimensional curve fitting using machine learning in [36]. A review was carried out for forecasting the share
trading from the stock market database using state of the art machine learning in [35].

2. SUPPORT VECTOR MACHINES WITH KERNEL EVALUATION
To classify instances of two classes using SVM, the input data x is mapped to higher

dimensional space geometry ()S xφ= and then devising an optimal hyperplane denoted by · 0w S b− =
separating the two classes [13]. The function is expressed as:

() , () (1)f x w x b= Φ +

which acts as decision boundary and is evaluated thereby using the function Φ that maps x to S space
which is in higher dimension [14]. The distance is maximized for the set of data points ()kxΦ that are
consistent on the training set with hyperplane characterized by (,)w b . The vector w is represented by:

*

1
()

m

k k k
k

w y xα
=

= Φ∑ and the quadratic optimization problem:

,
1 ,

1 1max () (,) (2)
2

m m

k k l k l k l k l
k k l

W y y K x x
Cα

α α α α δ
=

 = − + 
 

∑ ∑
is solved through *

kα [15].

27

Vinai George Biju, Prashanth CM

The mapped data ()kx could be contained in the smallest sphere of radius
R . The radius margin bound 224E R w is evaluated to determine E i.e
leave one out error bounds for SVMs. The distance pS between a support vec-
tor ()px that is mapped and the span of all other support vectors

* 2
p p

p
E S is used to devise methodically a tighter bound called span esti-

mate. SVM with the variable 2
pS and the quadratic slack variables is de-

pendent on 1
1 0sv T

K
K  

  
 

which is the the dot product between support vectors

extended matrix by the equation 2 11 / ()p SV PPS K  . We have made use of linear
Kernel represented by (,) ꞏi j i jk x x x x and quadratic kernel denoted

2(,) (ꞏ 1)i j i jk x x x x  for classifying instances using SVM.
If the number of instances are fewer than no of features representing the

dimension space, it would result in an under par performance. It would defi-
nitely be an undetermined problem to find a hyperplane that fits the data in
such cases. Then maximizing the margin with optimal parameters in SVM to
find a solution will not be sufficient enough. Retaining only the features that
are relevant, the dimensionality of the input space could be reduced [16].

The L1 soft-margin expression which is the fundamental problem for
SVMs is solved by

(3)

This computational problem explained by its dual form through the kernel

function implementing the non linear transformation.

(4)

 Gaussian kernel represented by
2

2(,) exp
2

k j
k j

x x
k x x



   
 
 

 and Polyno-

mial kernel denoted by (,) (1 ꞏ)d
k j k jk x x x x  are other popular kernel func-

tions used in this paper.

33

Table 1. Classification Output Parametrics for Support Vector Machine.
DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.69 0.36 0.6 0.41 0.64 0.5 0.54 63.71

BreastCancer 0.11 0.3 0.55 0.67 0.7 0.68 0.63 69.58

ContactLenses 0.1 0.31 0.41 0.69 0.71 0.7 0.65 70.83

GermanCredit 1.54 0.25 0.5 0.74 0.75 0.74 0.68 75.1

PimaDiabetes 0.03 0.23 0.48 0.77 0.77 0.76 0.7 77.34

Glass 0.81 0.21 0.32 0.52 0.56 0.52 0.48 56.07

Hypothyroid 7.73 0.26 0.32 0.89 0.94 0.91 0.88 93.61

Ionosphere 0.36 0.11 0.34 0.89 0.89 0.88 0.83 88.6

Iris 0.13 0.23 0.29 0.96 0.96 0.96 0.94 96

Labor 0.21 0.11 0.32 0.89 0.9 0.89 0.85 89.47

Soybean 1.81 0.09 0.21 0.94 0.94 0.94 0.91 93.85

Vote 0.36 0.04 0.2 0.96 0.96 0.96 0.94 96.09

Weather 0.05 0.43 0.65 0.53 0.57 0.54 0.54 57.14

Segment 0.59 0.21 0.3 0.92 0.92 0.92 0.88 91.93

Weather 0.05 0.43 0.65 0.53 0.57 0.54 0.54 57.14

Segment 0.59 0.21 0.3 0.92 0.92 0.92 0.88 91.93

The solution to the above problem is established using the Lagrangian formulation and it is shown
that

1
0m

k kk
y α

=
=∑ and , 0k kα∀ ≥ , where ,k lδ denotes Kronecker symbol with (,) (), ()k l k lK x x x x= Φ Φ

representing the Gram matrix data set used for training. The predicted class label for each x can be computed
after examining the sign of ()f x .
The mapped data ()kxΦ could be contained in the smallest sphere of radius R . The radius margin bound

224E R w≤ is evaluated to determine E i.e leave one out error bounds for SVMs. The distance pS

between a support vector ()pxΦ that is mapped and the span of all other support vectors * 2
p p

p
E Sα≤∑ is

used to devise methodically a tighter bound called span estimate. SVM with the variable 2
pS and the

quadratic slack variablesξ is dependent on
1

1 0sv T

K
K  

=  
 

which is the the dot product between support

vectors extended matrix by the equation 2 11/ ()p SV PPS K −= . We have made use of linear Kernel represented by

(,) ·i j i jk x x x x= and quadratic kernel denoted 2(,) (· 1)i j i jk x x x x= + for classifying instances using
SVM.
If the number of instances are fewer than no of features representing the dimension space, it would result in
an under par performance. It would definitely be an undetermined problem to find a hyperplane that fits the
data in such cases. Then maximizing the margin with optimal parameters in SVM to find a solution will not
be sufficient enough. Retaining only the features that are relevant, the dimensionality of the input space could
be reduced [16].

The L1 soft-margin expression which is the fundamental problem for SVMs is solved by
2 (1min || || where (·) 1 , 0

2
3)k k k k k k

i
w C y w z bξ ξ ξ+ − ≥ − ≥ ∀∑

.
This computational problem explained by its dual form through the kernel function implementing

the non linear transformation.
1max (,) where 0 0 where (,) ()· () (4)
2i k j k j k j k k k k k j k j

i k j k
y y k x x C y k x x x xα α α α α φ φ− ≤ ≤ ∀ = =∑ ∑∑ ∑

Gaussian kernel represented by
2

2(,) exp
2

k j
k j

x x
k x x

σ

 − = −
 
 

and Polynomial kernel denoted by

(,) (1 ·)d
k j k jk x x x x= + are other popular kernel functions used in this paper.

Table 2. Classification Output Parametrics for Decision Stump.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.13 0.42 0.46 0.68 0.64 0.65 0.64 64.4

BreastCancer 0.05 0.38 0.44 0.68 0.69 0.68 0.63 68.53

ContactLenses 0.01 0.23 0.36 0.71 0.71 0.68 0.71 70.83

GermanCredit 0.08 0.38 0.43 0.49 0.7 0.58 0.68 70

PimaDiabetes 0.05 0.38 0.44 0.72 0.72 0.72 0.68 71.88

Glass 0.01 0.18 0.3 0.21 0.45 0.28 0.34 44.86

Hypothyroid 0.21 0.03 0.12 0.95 0.95 0.95 0.95 95.39

Ionosphere 0.15 0.27 0.37 0.86 0.83 0.81 0.75 82.62

Iris 0.01 0.22 0.33 0.5 0.67 0.56 0.67 66.67

Labor 0.01 0.21 0.34 0.81 0.81 0.8 0.84 80.7

Soybean 0.01 0.08 0.2 0.13 0.28 0.16 0.21 27.96

Vote 0.01 0.08 0.2 0.96 0.96 0.96 0.93 95.63

Weather 0.02 0.49 0.59 0.29 0.29 0.29 0.58 28.57

Segment 0.11 0.21 0.32 0.11 0.3 0.16 0.28 30.4

3. DECISION TREES FOR INDEPENDENT OBSERVATIONS
A decision tree is a directed acyclic graph form of tree classifier. There is no incoming edges for the

root of the tree and every internal node have outgoing edges with an incoming edge [17]. We apply binary
decision trees in this study so that every node has outgoing edges either with number zero or two. The
leafnode does not have any outgoing edges and is labeled with a class label. The splitting attribute nX or
predictor attribute is associated with each internal node. If nX denotes a numerical attribute, then nq which
is the splitting predicate holds the form n nX x≤ and ()n nx dom X∈ where nx is called the split point of node
n . If nX denotes a categorical attribute, then nq holds in the form n nX J∈ where ()n nJ dom X⊂ and nJ
represents the splitting subset at the node n [18]. A classification tree is typically built using training data in
two phases namely growing phase and pruning phase. The split selection techniques producing binary splits
at each node is usually established on impurity-based method [19]. The problem of decision tree induction
formally giving background terminology is indicated as follows: Let random variables be represented as

1,..., mX X , C . The domain of iX is denoted as () and () {1,2,..., }idom X dom C k= . The decision Tree
classifier is represented as a function 1: () ... () ().md dom X dom X dom C× × � Let the probability
distribution be represented as (,)P X C′ ′ and a random record 1. ,... . , .mt t X t X t C= be drawn from P where

1. ,... . mt X t X X ′∈ and .t C C′∈ [20]

Decision tree learning induction using complete observations is as follows: For each data point and its
neighbors , 1,...,ix i k= , along with a ranking associated as iσ ∈Ω , the probability distribution is denoted as

28

Friedman and Wilcoxon Evaluations Comparing ...

Table 2. Classification Output Parametrics for Decision Stump.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.13 0.42 0.46 0.68 0.64 0.65 0.64 64.4

BreastCancer 0.05 0.38 0.44 0.68 0.69 0.68 0.63 68.53

ContactLenses 0.01 0.23 0.36 0.71 0.71 0.68 0.71 70.83

GermanCredit 0.08 0.38 0.43 0.49 0.7 0.58 0.68 70

PimaDiabetes 0.05 0.38 0.44 0.72 0.72 0.72 0.68 71.88

Glass 0.01 0.18 0.3 0.21 0.45 0.28 0.34 44.86

Hypothyroid 0.21 0.03 0.12 0.95 0.95 0.95 0.95 95.39

Ionosphere 0.15 0.27 0.37 0.86 0.83 0.81 0.75 82.62

Iris 0.01 0.22 0.33 0.5 0.67 0.56 0.67 66.67

Labor 0.01 0.21 0.34 0.81 0.81 0.8 0.84 80.7

Soybean 0.01 0.08 0.2 0.13 0.28 0.16 0.21 27.96

Vote 0.01 0.08 0.2 0.96 0.96 0.96 0.93 95.63

Weather 0.02 0.49 0.59 0.29 0.29 0.29 0.58 28.57

Segment 0.11 0.21 0.32 0.11 0.3 0.16 0.28 30.4

3 DECISION TREES FOR INDEPENDENT OBSERVATIONS

A decision tree is a directed acyclic graph form of tree classifier. There is no
incoming edges for the root of the tree and every internal node have outgoing
edges with an incoming edge [17]. We apply binary decision trees in this
study so that every node has outgoing edges either with number zero or two.
The leafnode does not have any outgoing edges and is labeled with a class
label. The splitting attribute nX or predictor attribute is associated with each
internal node. If nX denotes a numerical attribute, then nq which is the
splitting predicate holds the form n nX x and ()n nx dom X where nx is
called the split point of node n . If nX denotes a categorical attribute, then nq
holds in the form n nX J where ()n nJ dom X and nJ represents the splitting
subset at the node n [18]. A classification tree is typically built using training
data in two phases namely growing phase and pruning phase. The split
selection techniques producing binary splits at each node is usually
established on impurity-based method [19]. The problem of decision tree
induction formally giving background terminology is indicated as follows: Let
random variables be represented as 1,..., mX X , C . The domain of iX is

29

Vinai George Biju, Prashanth CM

denoted as () and () {1,2,..., }idom X dom C k . The decision Tree classifier is
represented as a function 1: () ... () ().md dom X dom X dom C  Let the
probability distribution be represented as (,)P X C  and a random record

1. ,... . , .mt t X t X t C be drawn from P where 1. ,... . mt X t X X  and .t C C
[20]

Decision tree learning induction using complete observations is as follows:
For each data point and its neighbors , 1,...,ix i k , along with a ranking
associated as i  , the probability distribution is denoted as  . |P x on 
which is locally constant. Since the observations are assumed to be
independent and 1{ ,... }k   with the parameters  ,  , the probability is
observed as

Table 3. Classification Output Parametrics for J48.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.28 0.46 0.48 0.41 0.64 0.5 0.54 63.71

BreastCancer 0.11 0.37 0.43 0.75 0.76 0.71 0.65 75.52

ContactLenses 0.08 0.15 0.32 0.85 0.83 0.84 0.81 83.33

GermanCredit 0.39 0.35 0.48 0.69 0.71 0.69 0.66 70.5

PimaDiabetes 0.28 0.32 0.45 0.74 0.74 0.74 0.73 73.83

Glass 0.03 0.1 0.29 0.67 0.67 0.67 0.61 66.82

Hypothyroid 0.58 0 0.04 1 1 1 1 99.58

Ionosphere 0.37 0.09 0.29 0.92 0.92 0.91 0.88 91.45

Iris 0.06 0.04 0.16 0.96 0.96 0.96 0.92 96

Labor 0.05 0.32 0.47 0.75 0.74 0.74 0.68 73.68

Soybean 0.31 0.01 0.08 0.92 0.92 0.91 0.92 91.51

Vote 0.17 0.06 0.17 0.96 0.96 0.96 0.96 96.32

Weather 0.01 0.29 0.48 0.63 0.64 0.63 0.81 64.29

Segment 0.4 0.01 0.11 0.96 0.96 0.96 0.95 95.73

(5)

The parameter  ,  has the maximum likelihood estimation for  given

as  
1

ˆ arg min ,
k

i
i

D


  


  [21].

35

(). |P x on Ω which is locally constant. Since the observations are assumed to be independent and

1{ ,... }kσ σ σ= with the parameters (),θ π , the probability is observed as

Table 3. Classification Output Parametrics for J48.
DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.28 0.46 0.48 0.41 0.64 0.5 0.54 63.71

BreastCancer 0.11 0.37 0.43 0.75 0.76 0.71 0.65 75.52

ContactLenses 0.08 0.15 0.32 0.85 0.83 0.84 0.81 83.33

GermanCredit 0.39 0.35 0.48 0.69 0.71 0.69 0.66 70.5

PimaDiabetes 0.28 0.32 0.45 0.74 0.74 0.74 0.73 73.83

Glass 0.03 0.1 0.29 0.67 0.67 0.67 0.61 66.82

Hypothyroid 0.58 0 0.04 1 1 1 1 99.58

Ionosphere 0.37 0.09 0.29 0.92 0.92 0.91 0.88 91.45

Iris 0.06 0.04 0.16 0.96 0.96 0.96 0.92 96

Labor 0.05 0.32 0.47 0.75 0.74 0.74 0.68 73.68

Soybean 0.31 0.01 0.08 0.92 0.92 0.91 0.92 91.51

Vote 0.17 0.06 0.17 0.96 0.96 0.96 0.96 96.32

Weather 0.01 0.29 0.48 0.63 0.64 0.63 0.81 64.29

Segment 0.4 0.01 0.11 0.96 0.96 0.96 0.95 95.73

() ()
1

exp ,
| , (5)

()

k
i

i

D
P

θ σ π
σ θ π

φ θ=

−
=∏

The parameter (),θ π has the maximum likelihood estimation for π given as ()
1

ˆ arg min ,
k

i
i

D
π

π σ π
=

= ∑ [21].

4. AGGREGATED BAGGING FOR BOOTSTRAP SAMPLES
Classifier optimization worked over estimation of error rate and model selection while learning from

sample data sets can conclude in bias and over fitting [22]. This could result in an unstable classification
model being generated and could be improved by the aggregation of classifiers. Bagged classification trees
could solve to reduce misclassification error substantially in most of the applications and bench mark
problems [23]

Table 4. Classification Output Parametrics for Bagging.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 2.33 0.46 0.48 0.41 0.64 0.5 0.54 63.71

BreastCancer 0.09 0.38 0.45 0.64 0.69 0.64 0.69 69.23

ContactLenses 0.03 0.31 0.4 0.53 0.58 0.55 0.77 58.33

GermanCredit 0.28 0.33 0.42 0.73 0.75 0.73 0.77 74.7

PimaDiabetes 0.51 0.32 0.41 0.75 0.76 0.75 0.81 75.78

Glass 0.03 0.12 0.24 0.71 0.72 0.71 0.76 72.43

Hypothyroid 1.4 0 0.05 1 1 1 1 99.52

Ionosphere 0.47 0.14 0.26 0.91 0.91 0.91 0.95 91.17

Iris 0.09 0.05 0.17 0.94 0.94 0.94 0.98 94

30

Friedman and Wilcoxon Evaluations Comparing ...

4 Aggregated bagging for bootstrap samples

 Classifier optimization worked over estimation of error rate and model
selection while learning from sample data sets can conclude in bias and over
fitting [22]. This could result in an unstable classification model being gener-
ated and could be improved by the aggregation of classifiers. Bagged classifi-
cation trees could solve to reduce misclassification error substantially in most
of the applications and bench mark problems [23]

Table 4. Classification Output Parametrics for Bagging.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 2.33 0.46 0.48 0.41 0.64 0.5 0.54 63.71

BreastCancer 0.09 0.38 0.45 0.64 0.69 0.64 0.69 69.23
Con-

tactLenses 0.03 0.31 0.4 0.53 0.58 0.55 0.77 58.33
GermanCred-

it 0.28 0.33 0.42 0.73 0.75 0.73 0.77 74.7

PimaDiabetes 0.51 0.32 0.41 0.75 0.76 0.75 0.81 75.78

Glass 0.03 0.12 0.24 0.71 0.72 0.71 0.76 72.43

Hypothyroid 1.4 0 0.05 1 1 1 1 99.52

Ionosphere 0.47 0.14 0.26 0.91 0.91 0.91 0.95 91.17

Iris 0.09 0.05 0.17 0.94 0.94 0.94 0.98 94

Labor 0.29 0.3 0.38 0.84 0.84 0.84 0.86 84.21

Soybean 0.39 0.03 0.11 0.84 0.86 0.84 0.92 85.65

Vote 0.3 0.07 0.17 0.96 0.96 0.96 0.98 95.63

Weather 0.02 0.53 0.56 0.38 0.5 0.43 0.44 50

Segment 0.7 0.02 0.1 0.96 0.96 0.96 0.99 95.87

Let {(,), 1,..., }k kL x y k N  denotes learning from N observations of
independent sample that comprise of predictors which are q dimensional
vectors denoted by 1(,..., .) P

k k kpx x x R  The learning sample have
observations assumed to be identical distributed and random variables that are
independent with a distinct distribution function

1 1where (,),..., (,...,) ~L N N LF x y x y F . The class denoted y-values for the
subsequent data is predicted by the classifier (,)C x L from a set of vector of
parameters x established through the learning sample L [24].

31

Vinai George Biju, Prashanth CM

Let the distribution be denoted by ,x yF for future observations represented
by (,)x y . To maintain stability for the classifiers C over averaged multiple
learning samples, classifier AC is aggregated for the observation x and is
illustrated as () (,).A F LC x E C x L The learning samples L and its expectation
is distributed accordingly as LF .

The aggregated rule ()AC x applying bootstrap as shown by
*ˆ () (,)A F LC x E C x L , is measured by bagging where *L denotes a random

sample from the formulated distribution evaluated from samples and is
denoted by the function * * * *

1 1. (,),..., (,) ~L N N LF x y x y F .
Based on B the bootstrap samples, the bagged classifier ˆ B

AC is computed as
follows. Initially B samples L of size N are drawn randomly *(1) *(),..., BL L with
replacement.

The iterative algorithm for Bagging is shown as follows:
1. The bootstrap sample *()bL is used to create the classifier C .
2. Classifier model is constructed iteratively for all bootstrap samples

 1,..., .b B
3. A new instance x is classified as,

(6)

we apply majority voting where  is the indicator function

(7)

To summarize performance of the bagged trees with smaller number of

splits with smaller node size is found to be better in some data distributions
than maximal unpruned trees and that the application requires careful tuning
of the relevant classifier parameters while applying bagging [25].

5 Combining hypothesis with boosting

In boosting the weak rules or hypotheses which are moderately accurate
are combined to design a classification rule that are highly accurate [26]. A
single rule combined hypothesis is then linearly combined from these weak
hypotheses. The predictive model function denoted by :f R  is designed
so that for example x and ()f x , the sign illustrated as (-1 or +1) indicates the
predicted class and the magnitude | () |f x is evaluated as the confidence
measure while creating a predictive model for learning [27].

Labor 0.29 0.3 0.38 0.84 0.84 0.84 0.86 84.21

Soybean 0.39 0.03 0.11 0.84 0.86 0.84 0.92 85.65

Vote 0.3 0.07 0.17 0.96 0.96 0.96 0.98 95.63

Weather 0.02 0.53 0.56 0.38 0.5 0.43 0.44 50

Segment 0.7 0.02 0.1 0.96 0.96 0.96 0.99 95.87

Let {(,), 1,..., }k kL x y k N= = denotes learning from N observations of independent sample that comprise of
predictors which are q − dimensional vectors denoted by 1(,..., .) P

k k kpx x x R= ∈ The learning sample have
observations assumed to be identical distributed and random variables that are independent with a distinct
distribution function 1 1where (,),..., (,...,) ~L N N LF x y x y F . The class denoted y-values for the subsequent
data is predicted by the classifier (,)C x L� from a set of vector of parameters x� established through the
learning sample L [24].
Let the distribution be denoted by ,x yF�� for future observations represented by (,)x y�� . To maintain stability
for the classifiers C over averaged multiple learning samples, classifier AC is aggregated for the observation
x� and is illustrated as () (,).A F LC x E C x L=� � The learning samples L and its expectation is distributed
accordingly as LF .

The aggregated rule ()AC x� applying bootstrap as shown by *ˆ () (,)A F LC x E C x L=� � , is measured by bagging
where *L denotes a random sample from the formulated distribution evaluated from samples and is denoted
by the function * * * *

1 1. (,),..., (,) ~L N N LF x y x y F� .

Based on B the bootstrap samples, the bagged classifier ˆ B
AC is computed as follows. Initially B samples L of

size N are drawn randomly *(1) *(),..., BL L with replacement.

The iterative algorithm for Bagging is shown as follows:
1. The bootstrap sample *()bL is used to create the classifier C .
2. Classifier model is constructed iteratively for all bootstrap samples 1,..., .b B=
3. A new instance x�is classified as,

*()
{ }

{1,2} 1

ˆ arg max ((,)) (6)
B

B b
A j

j b
C C x Lχ

∈ =

= ∑ �

we apply majority voting where χ is the indicator function
1

() (7)
0Z

x Z
x

else
χ

∈
= 


To summarize performance of the bagged trees with smaller number of splits with smaller node size is found
to be better in some data distributions than maximal unpruned trees and that the application requires careful
tuning of the relevant classifier parameters while applying bagging [25].

5. COMBINING HYPOTHESIS WITH BOOSTING
In boosting the weak rules or hypotheses which are moderately accurate are combined to design a
classification rule that are highly accurate [26]. A single rule combined hypothesis is then linearly combined
from these weak hypotheses. The predictive model function denoted by :f Rχ → is designed so that for
example x and ()f x , the sign illustrated as (-1 or +1) indicates the predicted class and the magnitude
| () |f x is evaluated as the confidence measure while creating a predictive model for learning [27].

The training sample S represented by: 1{(,)}m
i i iS x y == contains input features x and output label y .

Let 1D be the distribution and is initialized for all 1() 1/D i m= , 1i i m∀ ≤ ≤ .

Labor 0.29 0.3 0.38 0.84 0.84 0.84 0.86 84.21

Soybean 0.39 0.03 0.11 0.84 0.86 0.84 0.92 85.65

Vote 0.3 0.07 0.17 0.96 0.96 0.96 0.98 95.63

Weather 0.02 0.53 0.56 0.38 0.5 0.43 0.44 50

Segment 0.7 0.02 0.1 0.96 0.96 0.96 0.99 95.87

Let {(,), 1,..., }k kL x y k N= = denotes learning from N observations of independent sample that comprise of
predictors which are q − dimensional vectors denoted by 1(,..., .) P

k k kpx x x R= ∈ The learning sample have
observations assumed to be identical distributed and random variables that are independent with a distinct
distribution function 1 1where (,),..., (,...,) ~L N N LF x y x y F . The class denoted y-values for the subsequent
data is predicted by the classifier (,)C x L� from a set of vector of parameters x� established through the
learning sample L [24].
Let the distribution be denoted by ,x yF�� for future observations represented by (,)x y�� . To maintain stability
for the classifiers C over averaged multiple learning samples, classifier AC is aggregated for the observation
x� and is illustrated as () (,).A F LC x E C x L=� � The learning samples L and its expectation is distributed
accordingly as LF .

The aggregated rule ()AC x� applying bootstrap as shown by *ˆ () (,)A F LC x E C x L=� � , is measured by bagging
where *L denotes a random sample from the formulated distribution evaluated from samples and is denoted
by the function * * * *

1 1. (,),..., (,) ~L N N LF x y x y F� .

Based on B the bootstrap samples, the bagged classifier ˆ B
AC is computed as follows. Initially B samples L of

size N are drawn randomly *(1) *(),..., BL L with replacement.

The iterative algorithm for Bagging is shown as follows:
1. The bootstrap sample *()bL is used to create the classifier C .
2. Classifier model is constructed iteratively for all bootstrap samples 1,..., .b B=
3. A new instance x�is classified as,

*()
{ }

{1,2} 1

ˆ arg max ((,)) (6)
B

B b
A j

j b
C C x Lχ

∈ =

= ∑ �

we apply majority voting where χ is the indicator function
1

() (7)
0Z

x Z
x

else
χ

∈
= 


To summarize performance of the bagged trees with smaller number of splits with smaller node size is found
to be better in some data distributions than maximal unpruned trees and that the application requires careful
tuning of the relevant classifier parameters while applying bagging [25].

5. COMBINING HYPOTHESIS WITH BOOSTING
In boosting the weak rules or hypotheses which are moderately accurate are combined to design a
classification rule that are highly accurate [26]. A single rule combined hypothesis is then linearly combined
from these weak hypotheses. The predictive model function denoted by :f Rχ → is designed so that for
example x and ()f x , the sign illustrated as (-1 or +1) indicates the predicted class and the magnitude
| () |f x is evaluated as the confidence measure while creating a predictive model for learning [27].

The training sample S represented by: 1{(,)}m
i i iS x y == contains input features x and output label y .

Let 1D be the distribution and is initialized for all 1() 1/D i m= , 1i i m∀ ≤ ≤ .

32

Friedman and Wilcoxon Evaluations Comparing ...

The training sample S represented by: 1{(,)}m
i i iS x y  contains input fea-

tures x and output label y .
Let 1D be the distribution and is initialized for all 1 () 1 /D i m , 1i i m  

.The weak hypothesis :th R  is found and later t R  is chosen to update

the distribution , ,1tD i i m   and 1
1

() exp(()() t i t i
t

t

D i y h x
D i

Z





 . Here tZ is

selected with distribution 1tD  .

Finally the hypothesis is combined and returned as
1

() ()
T

t t
t

f x h x


 [28].

Table 5. Classification Output Parametrics for LogitBoost.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.16 0.31 0.4 0.76 0.76 0.76 0.81 76.03

BreastCancer 0.09 0.36 0.44 0.7 0.72 0.71 0.72 72.38

ContactLenses 0.05 0.19 0.37 0.75 0.75 0.75 0.84 75

GermanCredit 0.22 0.36 0.43 0.68 0.71 0.68 0.75 70.8

PimaDiabetes 0.31 0.31 0.41 0.73 0.74 0.74 0.81 74.09

Glass 0.09 0.1 0.24 0.71 0.72 0.7 0.75 71.5

Hypothyroid 1.49 0.01 0.04 1 1 1 1 99.58

Ionosphere 0.23 0.14 0.28 0.91 0.91 0.91 0.95 91.17

Iris 0.2 0.05 0.18 0.94 0.94 0.94 0.94 94

Labor 0.06 0.15 0.31 0.89 0.9 0.89 0.91 89.47

Soybean 0.61 0.01 0.07 0.93 0.93 0.93 0.97 92.97

Vote 0.23 0.06 0.18 0.96 0.95 0.95 0.99 95.4

Weather 0.01 0.46 0.6 0.38 0.5 0.43 0.57 50

Segment 1.27 0.02 0.1 0.96 0.96 0.96 0.99 95.93

Figure 1. Boosted Tree Ensemble

33

Vinai George Biju, Prashanth CM

Figure 2. Weighted Boosting

Let the subset 1X and 0X be the examples for which p predicate holds

true and does not hold true respectively. If  holds true, then     be 1
corresponding to that predicate  and 0 otherwise.

The following values for j

bW is evaluated when { 1, 1}b   and {0,1}j
for tD , which represents the current distribution.

(8)

37

The weak hypothesis :th Rχ → is found and later t Rα ∈ is chosen to update the distribution

, ,1tD i i m∀ ≤ ≤ and 1
1

() exp(()
() t i t i

t
t

D i y h x
D i

Z
α

+

−
= . Here tZ is selected with distribution 1tD + .

Finally the hypothesis is combined and returned as
1

() ()
T

t t
t

f x h xα
=

= ∑ [28].

Table 5. Classification Output Parametrics for LogitBoost.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.16 0.31 0.4 0.76 0.76 0.76 0.81 76.03

BreastCancer 0.09 0.36 0.44 0.7 0.72 0.71 0.72 72.38

ContactLenses 0.05 0.19 0.37 0.75 0.75 0.75 0.84 75

GermanCredit 0.22 0.36 0.43 0.68 0.71 0.68 0.75 70.8

PimaDiabetes 0.31 0.31 0.41 0.73 0.74 0.74 0.81 74.09

Glass 0.09 0.1 0.24 0.71 0.72 0.7 0.75 71.5

Hypothyroid 1.49 0.01 0.04 1 1 1 1 99.58

Ionosphere 0.23 0.14 0.28 0.91 0.91 0.91 0.95 91.17

Iris 0.2 0.05 0.18 0.94 0.94 0.94 0.94 94

Labor 0.06 0.15 0.31 0.89 0.9 0.89 0.91 89.47

Soybean 0.61 0.01 0.07 0.93 0.93 0.93 0.97 92.97

Vote 0.23 0.06 0.18 0.96 0.95 0.95 0.99 95.4

Weather 0.01 0.46 0.6 0.38 0.5 0.43 0.57 50

Segment 1.27 0.02 0.1 0.96 0.96 0.96 0.99 95.93

Figure 1. Boosted Tree Ensemble

Figure 2. Weighted Boosting

Let the subset 1X and 0X be the examples for which p predicate holds true and does not hold true
respectively. If π holds true, then []π   be 1 corresponding to that predicate π and 0 otherwise.

The following values for j
bW is evaluated when { 1, 1}b∈ + − and {0,1}j∈ for tD , which represents the

current distribution.

1
() (8)

m
j

b t i j i
i

W D i x X y b
=

  = ∈ ∧ =  ∑

Table 6. Classification Output Parametrics for AdaBoost.

34

Friedman and Wilcoxon Evaluations Comparing ...

Table 6. Classification Output Parametrics for AdaBoost.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.42 0.33 0.41 0.74 0.75 0.74 0.79 74.86

BreastCancer 0.42 0.35 0.43 0.69 0.7 0.7 0.73 70.28

ContactLenses 0.12 0.36 0.41 0.72 0.71 0.69 0.7 70.83

GermanCredit 0.23 0.36 0.43 0.66 0.7 0.67 0.74 69.5

PimaDiabetes 0.2 0.31 0.42 0.74 0.74 0.74 0.8 74.35

Glass 0.01 0.18 0.3 0.21 0.45 0.28 0.34 44.86

Hypothyroid 0.37 0.03 0.12 0.91 0.93 0.92 0.97 93.21

Ionosphere 0.22 0.16 0.27 0.92 0.91 0.91 0.94 90.88

Iris 0.12 0.07 0.17 0.95 0.95 0.95 0.94 95.33

Labor 0.28 0.15 0.34 0.88 0.88 0.88 0.87 87.72

Soybean 0.01 0.08 0.2 0.13 0.28 0.16 0.21 27.96

Vote 0.23 0.06 0.19 0.95 0.95 0.95 0.99 95.4

Weather 0.02 0.49 0.63 0.53 0.57 0.54 0.52 57.14

Segment 0.03 0.21 0.32 0.11 0.3 0.16 0.28 30.4

j

bW represents the weight of class b for the examples used for training in
partition jX which follows the distribution tD . Setting t = 1 and choosing

1

1

1 ln
2

j

j j

Wc
W





 
  

 
, the value for tZ is minimized for a certain predicate. This

background indicates that 1 1
{0,1}

2 j j
t

j
Z W W 



  and shows that for boosting's

generalization error derives an upper bound

(9)

The training examples are assumed to be generated over the probability
distribution Pr[ꞏ] and the training sample generated over empirical probability
distribution is denoted by P [ꞏ].r

Though the bound for d which is the space of VC-dimension for all likely
base classifiers convert to be very feeble as the rounds T increases, prediction
using AdaBoost will rapidly overfit with number of rounds which is usually
moderate. Overfitting normally does not happen on the training examples by

the notion of margins in the case of boosting. The margin
()

(,) t tt

tt

y h x
x y




 


DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.42 0.33 0.41 0.74 0.75 0.74 0.79 74.86

BreastCancer 0.42 0.35 0.43 0.69 0.7 0.7 0.73 70.28

ContactLenses 0.12 0.36 0.41 0.72 0.71 0.69 0.7 70.83

GermanCredit 0.23 0.36 0.43 0.66 0.7 0.67 0.74 69.5

PimaDiabetes 0.2 0.31 0.42 0.74 0.74 0.74 0.8 74.35

Glass 0.01 0.18 0.3 0.21 0.45 0.28 0.34 44.86

Hypothyroid 0.37 0.03 0.12 0.91 0.93 0.92 0.97 93.21

Ionosphere 0.22 0.16 0.27 0.92 0.91 0.91 0.94 90.88

Iris 0.12 0.07 0.17 0.95 0.95 0.95 0.94 95.33

Labor 0.28 0.15 0.34 0.88 0.88 0.88 0.87 87.72

Soybean 0.01 0.08 0.2 0.13 0.28 0.16 0.21 27.96

Vote 0.23 0.06 0.19 0.95 0.95 0.95 0.99 95.4

Weather 0.02 0.49 0.63 0.53 0.57 0.54 0.52 57.14

Segment 0.03 0.21 0.32 0.11 0.3 0.16 0.28 30.4

j
bW represents the weight of class b for the examples used for training in partition jX which follows

the distribution tD . Setting tα = 1 and choosing 1

1

1 ln
2

j

j j

Wc
W

+

−

 
=  

 
, the value for tZ is minimized for a

certain predicate. This background indicates that 1 1
{0,1}

2 j j
t

j
Z W W+ −

∈

= ∑ and shows that for boosting's

generalization error derives an upper bound

Pr[()] P [()] (9)TdH x y r H x y O
m

 
≠ ≤ ≠ +   

 
�

The training examples are assumed to be generated over the probability distribution Pr[·] and the
training sample generated over empirical probability distribution is denoted by P [·].r

Though the bound for d which is the space of VC-dimension for all likely base classifiers convert to be
very feeble as the rounds T increases, prediction using AdaBoost will rapidly overfit with number of
rounds which is usually moderate. Overfitting normally does not happen on the training examples by

the notion of margins in the case of boosting. The margin
()

(,) t tt

tt

y h x
x y

α
α

= ∑
∑

for the example (,)x y

is based on the votes ()th x along with tα denoting the weights for all hypotheses [29].
The power of settlement for the base classifiers is indicated by the magnitude of the margin and the
correct prediction combining votes is indicated by the sign it produces. The number of boosting rounds
is independent on the bound and that the generalization error θ is maximum for the case as shown as:

2P [(,)] (10)Tdr margin x y O
m

θ
θ

 
≤ +   

 
�

Table 7. Classification Output Parametrics for K Nearest Neighbor.
DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.02 0.62 0.78 0.69 0.37 0.21 0.53 37.13

BreastCancer 0.02 0.33 0.51 0.7 0.72 0.7 0.69 72.38

ContactLenses 0.01 0.23 0.32 0.8 0.79 0.8 0.89 79.17

GermanCredit 0.02 0.28 0.53 0.72 0.72 0.72 0.67 72

35

Vinai George Biju, Prashanth CM

for the example (,)x y is based on the votes ()th x along with t denoting the
weights for all hypotheses [29].

The power of settlement for the base classifiers is indicated by the magni-
tude of the margin and the correct prediction combining votes is indicated by
the sign it produces. The number of boosting rounds is independent on the
bound and that the generalization error  is maximum for the case as shown
as:

(10)

Table 7. Classification Output Parametrics for K Nearest Neighbor.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.02 0.62 0.78 0.69 0.37 0.21 0.53 37.13

BreastCancer 0.02 0.33 0.51 0.7 0.72 0.7 0.69 72.38

ContactLenses 0.01 0.23 0.32 0.8 0.79 0.8 0.89 79.17

GermanCredit 0.02 0.28 0.53 0.72 0.72 0.72 0.67 72

PimaDiabetes 0.02 0.3 0.55 0.7 0.7 0.7 0.64 70.18

Glass 0.01 0.09 0.29 0.71 0.71 0.7 0.6 70.56

Hypothyroid 0.03 0.04 0.21 0.91 0.92 0.91 0.9 91.52

Ionosphere 0.01 0.14 0.37 0.87 0.86 0.86 0.81 86.32

Iris 0.01 0.04 0.17 0.95 0.95 0.95 0.93 95.33

Labor 0.01 0.19 0.41 0.83 0.83 0.83 0.79 82.46

Soybean 0.01 0.01 0.09 0.92 0.91 0.91 0.91 91.22

Vote 0.01 0.07 0.24 0.93 0.92 0.93 0.96 92.41

Weather 0.01 0.25 0.43 0.8 0.79 0.79 0.78 78.57

Segment 0.01 0.01 0.1 0.96 0.96 0.96 0.93 96.2

6 K-Nearest Neighbour with cost-distance metrics

The k-Nearest-Neighbours (kNN) is a effective but simple non-parametric
classification technique. For classification of a data record t , a neighbourhood
is formulated from its nearest k neighbours and retrieved using distance
measure metric[30]. Considering weight-based distance, the class label for t is
decided usually among the data records with majority voting in the neigh-
bourhood of t [31].

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.42 0.33 0.41 0.74 0.75 0.74 0.79 74.86

BreastCancer 0.42 0.35 0.43 0.69 0.7 0.7 0.73 70.28

ContactLenses 0.12 0.36 0.41 0.72 0.71 0.69 0.7 70.83

GermanCredit 0.23 0.36 0.43 0.66 0.7 0.67 0.74 69.5

PimaDiabetes 0.2 0.31 0.42 0.74 0.74 0.74 0.8 74.35

Glass 0.01 0.18 0.3 0.21 0.45 0.28 0.34 44.86

Hypothyroid 0.37 0.03 0.12 0.91 0.93 0.92 0.97 93.21

Ionosphere 0.22 0.16 0.27 0.92 0.91 0.91 0.94 90.88

Iris 0.12 0.07 0.17 0.95 0.95 0.95 0.94 95.33

Labor 0.28 0.15 0.34 0.88 0.88 0.88 0.87 87.72

Soybean 0.01 0.08 0.2 0.13 0.28 0.16 0.21 27.96

Vote 0.23 0.06 0.19 0.95 0.95 0.95 0.99 95.4

Weather 0.02 0.49 0.63 0.53 0.57 0.54 0.52 57.14

Segment 0.03 0.21 0.32 0.11 0.3 0.16 0.28 30.4

j
bW represents the weight of class b for the examples used for training in partition jX which follows

the distribution tD . Setting tα = 1 and choosing 1

1

1 ln
2

j

j j

Wc
W

+

−

 
=  

 
, the value for tZ is minimized for a

certain predicate. This background indicates that 1 1
{0,1}

2 j j
t

j
Z W W+ −

∈

= ∑ and shows that for boosting's

generalization error derives an upper bound

Pr[()] P [()] (9)TdH x y r H x y O
m

 
≠ ≤ ≠ +   

 
�

The training examples are assumed to be generated over the probability distribution Pr[·] and the
training sample generated over empirical probability distribution is denoted by P [·].r

Though the bound for d which is the space of VC-dimension for all likely base classifiers convert to be
very feeble as the rounds T increases, prediction using AdaBoost will rapidly overfit with number of
rounds which is usually moderate. Overfitting normally does not happen on the training examples by

the notion of margins in the case of boosting. The margin
()

(,) t tt

tt

y h x
x y

α
α

= ∑
∑

for the example (,)x y

is based on the votes ()th x along with tα denoting the weights for all hypotheses [29].
The power of settlement for the base classifiers is indicated by the magnitude of the margin and the
correct prediction combining votes is indicated by the sign it produces. The number of boosting rounds
is independent on the bound and that the generalization error θ is maximum for the case as shown as:

2P [(,)] (10)Tdr margin x y O
m

θ
θ

 
≤ +   

 
�

Table 7. Classification Output Parametrics for K Nearest Neighbor.
DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.02 0.62 0.78 0.69 0.37 0.21 0.53 37.13

BreastCancer 0.02 0.33 0.51 0.7 0.72 0.7 0.69 72.38

ContactLenses 0.01 0.23 0.32 0.8 0.79 0.8 0.89 79.17

GermanCredit 0.02 0.28 0.53 0.72 0.72 0.72 0.67 72

36

Friedman and Wilcoxon Evaluations Comparing ...

Applying kNN requires choosing a suitable value for k , and the feat of
classification is greatly dependent on the value of k . Since the kNN method
is influenced by k and out of several ways of selecting the k value, a modest
way is to execute the algorithm for several epochs with diverse k values and
the one which supports the finest performance is chosen. In direction to kNN
being not to be too much dependent on the selection of k , it is pre-eminent to
observe sets of multiple nearest neighbours than rather just few k-nearest
neighbour sets [32].

Figure 3. K-Nearest Neighbour

The extreme cost of kNN for classifying novel instances is mainly due to
the reason that almost all computation happens during classification time ra-
ther than the training examples when first come across. To relieve the prob-
lem of heavy cost incurred storing the entire training set when it is very large,
recent studies have attempted to eliminate the redundancy of the training set
applied to k-Nearest-Neighbours classifier. kNN preserves the entire training
data for classification and is a learning method which is case-based. Let

(), (), (), ()i i i iSim d Cls d Rp d Num d  represents the lower bound similarity of
id to data values enclosed by iN the class label of id , an illustration of id to

itself and the data tuples enclosed by iN respectively for the the model creat-
ed .M The  iSim d value with minimum value is chosen, viz. representative
with maximum density if equivalent maximal number of neighbours exist for
more than one neighbour.

The classification algorithm is illustrated as follows:
1. For classification of a novel data tuple td , the similarity to every represen-

tation point in the model M is evaluated.

37

Vinai George Biju, Prashanth CM

2. If only one representation point is covered for
, (), (), (), () ,t i i i i td Sim d Cls d Rp d Num d d  is classified as the grouping of

jd as followed by the Euclidean distance of jd to td has a value less than
Sim(jd)

3. td is classified to be the category of the grouping with highest Num(jd) if
td is covered by minimum two symbolic diverse category, following the

neighbourhood spanning the highest number of data tuples among the da-
taset used for training .

4. td is classified to be the category of grouping in which the boundary is
nearest to td if there is no grouping in the model M that covers td .

The Euclidean distance of td to id subtracted with Sim(id) indicates the

Euclidean distance of td to id represented with the closest boundary [33].
Let 1{(,)}n

i i ix y  denote data used for training with n examples labeled us-
ing inputs d

ix R and class labels usually discrete iy . The binary input matrix
is used {0,1}ijy  to show that the labels iy and jy match or otherwise. The
goal learns a linear transformation which could be used to find squared dis-
tances: 2(,) || (,) ||i j i jD x x L x x . The cost function parameterized and conclud-
ing the distance metrics has significant terms penalizing heavy distances be-
tween each its target neighbors and input, while the other term penalizes mi-
nor distances between every inputs that does not form similar label and each
input [34].

Precisely, the cost function is computed as:

(11)

7 Statistical significance using Friedman test and Wilcoxon test

Let S and L be the number of +ve class and -ve class in the data set, re-
spectively; let S denote the number of +ve classes that are correctly classified
by a system, and S the number of +ve classes misclassified as -ve class. In
the same way, let L and L be the number of -ve classes classified by a sys-
tem as +ve class and -ve class, respectively. These four values form a con-
tingency table which summarizes the behavior of a system. The widely-used
measures precision (p), recall (r) and F are defined as follows:

(2) If only one representation point is covered for , (), (), (), () ,t i i i i td Sim d Cls d Rp d Num d d< > is classified
as the grouping of jd as followed by the Euclidean distance of jd to td has a value less than Sim(jd)
(3) td is classified to be the category of the grouping with highest Num(jd) if td is covered by minimum
two symbolic diverse category, following the neighbourhood spanning the highest number of data tuples
among the dataset used for training .
(4) td is classified to be the category of grouping in which the boundary is nearest to td if there is no
grouping in the model M that covers td .
The Euclidean distance of td to id subtracted with Sim(id) indicates the Euclidean distance of td to id
represented with the closest boundary [33].

Let 1{(,)}n
i i ix y =

� denote data used for training with n examples labeled using inputs d
ix R∈
� and class labels

usually discrete iy . The binary input matrix is used {0,1}ijy ∈ to show that the labels iy and jy match or
otherwise. The goal learns a linear transformation which could be used to find squared distances:

2(,) || (,) ||i j i jD x x L x x=
� � � � . The cost function parameterized and concluding the distance metrics has significant

terms penalizing heavy distances between each its target neighbors and input, while the other term penalizes
minor distances between every inputs that does not form similar label and each input [34].
Precisely, the cost function is computed as:

2arg min || (,) ||t yt tj i j
j

y L x xη= +∑ � �

2 2

,
(1)[1 || (,) || | (,) ||] (11)tj il i j i l

j i t l t
c y L x x L x xη

= ∨ =

− + −∑ � � � �

7. STATISTICAL SIGNIFICANCE USING FRIEDMAN TEST AND WILCOXON TEST

Let S and L be the number of +ve class and -ve class in the data set, respectively; let S+ denote the number of
+ve classes that are correctly classified by a system, and S− the number of +ve classes misclassified as -ve
class. In the same way, let L+ and L− be the number of -ve classes classified by a system as +ve class and
-ve class, respectively. These four values form a contingency table which summarizes the behavior of a
system. The widely-used measures precision (p), recall (r) and Fβ are defined as follows:

2

2

(1) (12)S S prp r F
S L S S p rβ

β
β

+ +

+ + + −

+
= = =

+ + +

We apply Friedman Test when we cannot assume that the data from each of groups are normally distributed
populations. Blocks of data are assumed to be independent and the underlying variable in the data are mostly
numeric in nature. When compared to F test, the Friedman rank test makes less stringent assumptions.The
Friedman rank test concludes that the populations differs atleast from one of the other populations in
variation, central tendency and shape. Friedman rank test also concludes if the input data groups have been
generated from the whole original data set with the medians.

38

Friedman and Wilcoxon Evaluations Comparing ...

(12)

We apply Friedman Test when we cannot assume that the data from each
of groups are normally distributed populations. Blocks of data are assumed to
be independent and the underlying variable in the data are mostly numeric in
nature. When compared to F test, the Friedman rank test makes less stringent
assumptions.The Friedman rank test concludes that the populations differs
atleast from one of the other populations in variation, central tendency and
shape. Friedman rank test also concludes if the input data groups have been
generated from the whole original data set with the medians.

Figure 4. ROC evaluation for Decision Tree, SVM, KNN, Boosted and Bagged Tree
Variants for Sparse Super Market Data.

(2) If only one representation point is covered for , (), (), (), () ,t i i i i td Sim d Cls d Rp d Num d d< > is classified
as the grouping of jd as followed by the Euclidean distance of jd to td has a value less than Sim(jd)
(3) td is classified to be the category of the grouping with highest Num(jd) if td is covered by minimum
two symbolic diverse category, following the neighbourhood spanning the highest number of data tuples
among the dataset used for training .
(4) td is classified to be the category of grouping in which the boundary is nearest to td if there is no
grouping in the model M that covers td .
The Euclidean distance of td to id subtracted with Sim(id) indicates the Euclidean distance of td to id
represented with the closest boundary [33].

Let 1{(,)}n
i i ix y =

� denote data used for training with n examples labeled using inputs d
ix R∈
� and class labels

usually discrete iy . The binary input matrix is used {0,1}ijy ∈ to show that the labels iy and jy match or
otherwise. The goal learns a linear transformation which could be used to find squared distances:

2(,) || (,) ||i j i jD x x L x x=
� � � � . The cost function parameterized and concluding the distance metrics has significant

terms penalizing heavy distances between each its target neighbors and input, while the other term penalizes
minor distances between every inputs that does not form similar label and each input [34].
Precisely, the cost function is computed as:

2arg min || (,) ||t yt tj i j
j

y L x xη= +∑ � �

2 2

,
(1)[1 || (,) || | (,) ||] (11)tj il i j i l

j i t l t
c y L x x L x xη

= ∨ =

− + −∑ � � � �

7. STATISTICAL SIGNIFICANCE USING FRIEDMAN TEST AND WILCOXON TEST

Let S and L be the number of +ve class and -ve class in the data set, respectively; let S+ denote the number of
+ve classes that are correctly classified by a system, and S− the number of +ve classes misclassified as -ve
class. In the same way, let L+ and L− be the number of -ve classes classified by a system as +ve class and
-ve class, respectively. These four values form a contingency table which summarizes the behavior of a
system. The widely-used measures precision (p), recall (r) and Fβ are defined as follows:

2

2

(1) (12)S S prp r F
S L S S p rβ

β
β

+ +

+ + + −

+
= = =

+ + +

We apply Friedman Test when we cannot assume that the data from each of groups are normally distributed
populations. Blocks of data are assumed to be independent and the underlying variable in the data are mostly
numeric in nature. When compared to F test, the Friedman rank test makes less stringent assumptions.The
Friedman rank test concludes that the populations differs atleast from one of the other populations in
variation, central tendency and shape. Friedman rank test also concludes if the input data groups have been
generated from the whole original data set with the medians.

39

Vinai George Biju, Prashanth CM

Table 8. Friedman Test on Classifier Results.

N=14 Mean StdD Min Max FrdMR

SVM 79.95 14.63 56.07 96.09 4.68

KNN 79.67 15.45 37.13 96.2 3.75

DecisionStump 64.18 22.93 27.96 95.63 2.21

J48 81.59 13.2 63.71 99.58 5

Bagging 79.3 15.43 50 99.52 4.07

Adaboost 70.2 22.79 27.96 95.4 3.29

Logitboost 82.02 14.11 50 99.58 5

Bagging 79.3 15.43 50 99.52 4.07

Adaboost 70.2 22.79 27.96 95.4 3.29

Logitboost 82.02 14.11 50 99.58 5

40

Friedman and Wilcoxon Evaluations Comparing ...

Figure 5. Confusion Matrix evaluation for Decision Tree, SVM, KNN, Boosted and
Bagged Tree Variants for Sparse Super Market Data.

41

Vinai George Biju, Prashanth CM

Figure 6. Classifier Mean Accuracy Figure 7. Classifier PRC Area

Figure 8. Classifier RMS Figure 9. Classifier F-Measure

 Figure 10. Classifier MAE Figure 11. Classifier Training Time

The Classifier results are analysed using Friedman test under the following
assumptions: One Data set is evaluated on three or more different classifiers.
Training/Test set is generated as random sample from the population.
Class/outcome variable is measured at the continuous or ordinal level. Sam-
ples are not necessarily normally distributed. The Wilcoxon signed rank test
evaluates samples having size n greater than 10 observations and is evalu-

42

Friedman and Wilcoxon Evaluations Comparing ...

ated in pair of samples. Since W statistics is a non-parametric test, the multi-
variate normality is not essential to be assumed for the data. The Wilcoxon
Signed Rank procedure evaluates under the illusion that the sample holds a
frequency distribution that is symmetric and is from random population. The
assumption which is symmetric never promises normality, as it is observed to
have approximately the equal number of data points below and above the
median.

The Wilcoxon technique evaluates a statistic for testing that is matched to
an expected value. It is evaluated by summation of differences which is
ranked along the deviation of every variable from a median. The Wilcoxon
sign test compares the two dependent observations and quantifies the number
of positive and negative differences.

Table 9. Wilcoxon Signed Ranks Test for Classifier Comparison.

Comparison Ranking Instances MeanRank SumOfRanks

J48-
DecisionStump

Negative Ranks 2 5 10

Positive Ranks 12 7.92 95

Ties 0

Bagging-
DecisionStump

Negative Ranks 2 4.5 9

Positive Ranks 11 7.45 82

Ties 1

Adaboost-
DecisionStump

Negative Ranks 3 2.33 7

Positive Ranks 7 6.86 48

Ties 4

Logitboost-
DecisionStump

Negative Ranks 1 1 1

Positive Ranks 13 8 104

Ties 0

Bagging-J48
Negative Ranks 8 7.25 58

Positive Ranks 5 6.6 33

Ties 1

Logitboost-J48
Negative Ranks 6 7.5 45

Positive Ranks 7 6.57 46

Ties 1

Adaboost-
Bagging

Negative Ranks 8 7.75 62

Positive Ranks 6 7.17 43

Ties 0
Logitboost- Negative Ranks 4 4.75 19

43

Vinai George Biju, Prashanth CM

Bagging
Positive Ranks 7 6.71 47

Ties 3

Logitboost-
Adaboost

Negative Ranks 3 5.33 16

Positive Ranks 10 7.5 75

Ties 1

KNN-SVM
Negative Ranks 9 6.22 56

Positive Ranks 5 9.8 49

Ties 0

DecisionStump-
SVM

Negative Ranks 11 7.73 85

Positive Ranks 2 3 6

Ties 0

J48-SVM
Negative Ranks 4 6 24

Positive Ranks 8 6.75 54

Ties 2

Bagging-SVM
Negative Ranks 9 6.22 56

Positive Ranks 4 8.75 35

Ties 1

Adaboost-SVM
Negative Ranks 9 6.56 59

Positive Ranks 3 6.33 19

Ties 2

Logitboost-
SVM

Negative Ranks 6 5.33 32

Positive Ranks 7 8.43 59

Ties 1

DecisionStump-
KNN

Negative Ranks 10 8.3 83

Positive Ranks 4 5.5 22

Ties 0

J48-KNN
Negative Ranks 5 7.6 38

Positive Ranks 9 7.44 67

Ties 0

Bagging-KNN
Negative Ranks 6 7.33 44

Positive Ranks 8 7.63 61

Ties 0

Adaboost-KNN
Negative Ranks 7 8.14 57

Positive Ranks 6 5.67 34

Ties 1

44

Friedman and Wilcoxon Evaluations Comparing ...

Logitboost-
KNN

Negative Ranks 5 6.6 33

Positive Ranks 9 8 72

Ties 1

Table 10. Z Score and Significance on Wilcoxon Test

 KNN-SVM DecStmp-SVM J48-SVM Bagg-SVM

Z -0.22 -2.76 -1.177 -0.734

Asy.Sig 0.826 0.006 0.239 0.463

 Adbst-SVM Logbst-SVM DecStmp-KNN J48-KNN

Z -1.569 -0.943 -1.915 -0.91

Asy.Sig 0.117 0.345 0.056 0.363

 Bagg-KNN Adbst-KNN Logbst-KNN J48-DecStmp

Z -0.534 -0.804 -1.224 -2.668

Asy.Sig 0.594 0.422 0.221 0.008

 Bagg-DecStmp Adbst-DecStmp Logbst-DecStmp Bagg-J48

Z -2.551 -2.09 -3.233 -0.874

Asy.Sig 0.011 0.037 0.001 0.382

 Adbst-J48 Logbst-J48 Logbst-Bagg Logbst-Adbst

Z -1.977 -0.035 -1.245 -2.062

Asy.Sig 0.048 0.972 0.213 0.039

The significance is tested using the standard normal distributed z-value as

shown in table 9 and table 10. The null hypothesis states that the median dif-
ference between pairs of classifier accuracy is zero. The null hypothesis is
rejected when the significant value is less than 0.05 indicating one of the clas-
sifier outperforms the other. Here from table 11, Asy.Sig value of 0.826 indi-
cates to accept the null hypothesis for KNN and SVM and Asy.Sig value of
0.006 shows that SVM and Decision Stump has statistically significant differ-
ences comparing the mean accuracy.

Conclusion

This work reviewed to assess various classification based machine learning
techniques and investigated statistical evaluation measures to compare the
results. Techniques for comparison and verification of classification results
are Support Vector Machines, K-Nearest Neighbor, Decision Stump, J48,

45

Vinai George Biju, Prashanth CM

Bagging, Logitboost and Adaboost. MAE, RMS, Precision, Recall, F-
Measure, PRC-Area and Accuracy was considered for comparison of classifi-
ers. Comparison of classifiers was executed using Weka 3 open source ma-
chine learning software and MATLAB 2016. Friedman and Wilcoxon test
was executed using IBM SPSS and Data sets were taken from UCI machine
learning repository. The statistical techniques used for validation of results are
Friedman Test and Wilcoxon Signed Rank Test in non-parametric setting.
Classification performance using SVM under Linear Kernel and Fine guassian
framework was found much better than other classifiers for Sparse Supermar-
ket Data. When the classifiers were compared with multiple data sets like Iris,
Labor, Vote, German Credit, Breast Cancer, Glass and many others, Friedman
Mean Rank was found high for J48 and LogitBoost. Pair wise comparison
with statistical significance was evaluated using Wilcoxon Signed Ranks Test.

References

1. Labatut, Vincent, and Hocine Cherifi “Accuracy measures for the comparison of
classifiers”. arXiv preprint arXiv, 1207.3790, 2012.

2. Duman, Ekrem, Yeliz Ekinci, and Aydin Tanriverdi “Comparing alternative
classifiers for database marketing: The case of imbalanced datasets”. Expert
Systems with Applications, 39.1, pp.48-53, 2012.

3. Aydemir, Onder, and Temel Kayikcioglu “Comparing common machine
learning classifiers in low-dimensional feature vectors for brain computer
interface applications”. International Journal of Innovative Computing,
Information and Control 9.3, pp.1145-1157, 2013.

4. Majnik, Matjaz, and Zoran Bosnic “ROC analysis of classifiers in machine
learning: A survey”. Intelligent data analysis, 17.3, pp.531-558, 2013.

5. Kim, Yoosin, Do Young Kwon, and Seung Ryul Jeong “Comparing machine
learning classifiers for movie WOM opinion mining”. KSII Transactions on
Internet and Information Systems 9.8, pp.3178-3190, 2015.

6. Kotfila, Christopher, and Ozlem Uzuner “A systematic comparison of feature
space effects on disease classifier performance for phenotype identification of
five diseases”. Journal of biomedical informatics 58, S92-S102, 2015.

7. Demsar, Janez “Statistical comparisons of classifiers over multiple data sets”.
Journal of Machine learning research 7.Jan, pp.1-30, 2006.

8. Mollazade, Kaveh, Mahmoud Omid, and Arman Arefi “Comparing data mining
classifiers for grading raisins based on visual features”. Computers and
electronics in agriculture 84, pp.124-131, 2012.

9. Dalton, Anthony, and Gearoid OLaighin “Comparing supervised learning
techniques on the task of physical activity recognition”. IEEE journal of
biomedical and health informatics 17.1, pp.46-52, 2013.

10. Bekhuis, Tanja, and Dina Demner-Fushman “Screening nonrandomized studies
for medical systematic reviews: a comparative study of classifiers. Artificial
intelligence in medicine 55.3, pp.197-207, 2012.

46

Friedman and Wilcoxon Evaluations Comparing ...

11. Deufemia, Vincenzo, et al. “Comparing classifiers for web user intent
understanding”. Empowering Organizations. Springer International Publishing,
pp.147-159, 2016.

12. Taghizadeh-Mehrjardi, R., et al. “Comparing data mining classifiers to predict
spatial distribution of USDA-family soil groups in Baneh region”, Iran.
Geoderma 253: 67-77, 2015.

13. Orru, Graziella, et al “Using support vector machine to identify imaging
biomarkers of neurological and psychiatric disease: a critical review”.
Neuroscience and Biobehavioral Reviews 36.4, pp.1140-1152, .2012.

14. Qi, Zhiquan, Yingjie Tian, and Yong Shi “Robust twin support vector machine
for pattern classification”. Pattern Recognition 46.1, pp.305-316, 2013.

15. Geng, Yishuang, et al. “Enlighten wearable physiological monitoring systems:
On-body rf characteristics based human motion classification using a support
vector machine”. IEEE transactions on mobile computing 15.3, pp.656-671,
2016.

16. Tehrany, Mahyat Shafapour, et al. “Flood susceptibility assessment using GIS-
based support vector machine model with different kernel types”. Catena 125,
pp.91-101, 2015.

17. Azar, Ahmad Taher, and Shereen M. El-Metwally. “Decision tree classifiers for
automated medical diagnosis”. Neural Computing and Applications 23.7-8,
pp.2387-2403, 2013.

18. Lajnef, Tarek, et al. “Learning machines and sleeping brains: automatic sleep
stage classification using decision-tree multi-class support vector machines”.
Journal of neuroscience methods 250, pp.94-105, 2015.

19. Wang, Ran, et al. “Segment based decision tree induction with continuous
valued attributes”. IEEE transactions on cybernetics 45.7, pp.1262-1275, 2015.

20. Oliver, Jonathan J., and David J. “Hand On pruning and averaging decision
trees. Machine Learning”: Proceedings of the Twelfth International Conference,
Morgan Kaufmann, pp.430-437, 1995.

21. Parvin, Hamid, Miresmaeil MirnabiBaboli, and Hamid Alinejad-Rokny.
“Proposing a classifier ensemble framework based on classifier selection and
decision tree”. Engineering Applications of Artificial Intelligence 37, pp.34-42,
2015.

22. Simidjievski, Nikola, Ljupco Todorovski, and Saso Dzeroski “Predicting long-
term population dynamics with bagging and boosting of process-based models”.
Expert Systems with Applications 42.22, pp.8484-8496, 2015.

23. Wang, Guan-Wei, Chun-Xia Zhang, and Gao Guo “Investigating the Effect of
Randomly Selected Feature Subsets on Bagging and Boosting”.
Communications in Statistics-Simulation and Computation 44.3, pp.636-646,
2015.

24. Abdollahi-Arpanahi, R., et al. “Assessment of bagging GBLUP for whole-
genome prediction of broiler chicken traits." Journal of Animal Breeding and
Genetics 132.3, pp.218-228, 2015.

25. Hegde, Chiranth, Scott Wallace, and Ken Gray “Using Trees, Bagging, and
Random Forests to Predict Rate of Penetration During Drilling”. SPE Middle
East Intelligent Oil and Gas Conference and Exhibition. Society of Petroleum
Engineers, doi:10.2118/176792-MS, 2015.

47

Vinai George Biju, Prashanth CM

26. Korytkowski, Marcin, Leszek Rutkowski, and Rafal Scherer “Fast image
classification by boosting fuzzy classifiers”. Information Sciences 327, pp.175—
182, 2016.

27. Appel, Ron, Thomas J. Fuchs, Piotr Dollar, and Pietro Perona “Quickly
Boosting Decision Trees-Pruning Underachieving Features Early”. In ICML (3),
pp.594-602, 2013.

28. Kim, Tae-Kyun, and Roberto Cipolla “Multiple classifier boosting and tree-
structured classifiers”. Machine Learning for Computer Vision. Springer Berlin
Heidelberg, pp.163-196, 2013.

29. Ye, Jerry, Jyh-Herng Chow, Jiang Chen, and Zhaohui Zheng “Stochastic
gradient boosted distributed decision trees”. In Proceedings of the 18th ACM
conference on Information and knowledge management, ACM, pp. 2061-2064,
2009.

30. Nowak, Bartosz A., et al. “Multi-class nearest neighbour classifier for
incomplete data handling”. International Conference on Artificial Intelligence
and Soft Computing. Springer International Publishing, 2015.

31. Osth, John, William AV Clark, and Bo Malmberg “Measuring the Scale of
Segregation Using k-Nearest Neighbor Aggregates”. Geographical Analysis
47.1, pp.34-49, 2015.

32. Chavez, Edgar, et al. “Near neighbor searching with K nearest references”.
Information Systems 51, pp.43-61, 2015.

33. Bhulai, Sandjai “Nearest neighbour algorithms for forecasting call arrivals in
call centers”. Intelligent Decision Technologies. Springer International
Publishing, pp. 77-87, 2015.

34. Blaszczyn'ski, Jerzy, and Jerzy Stefanowski “Neighbourhood sampling in
bagging for imbalanced data”. Neurocomputing, 150, pp.529-542, 2015.

35. Kamley S, Jaloree S, Thakur RS. “Performance Forecasting of Share Market
using Machine Learning Techniques: A Review”. International Journal of Elec-
trical and Computer Engineering. 6(6):3196, 2016.

36. Vidyullatha P, Rao DR. Machine Learning Techniques on Multidimensional
Curve Fitting Data Based on R-Square and Chi-Square Methods. International
Journal of Electrical and Computer Engineering. 1;6(3):974, 2016.

JACSM 2017, Vol. 9, No. 1, pp. 49 -

49

ANALYSIS OF PERFORMANCE AND EFFICIENCY OF
HARDWARE AND SOFTWARE FIREWALLS

Wojciech Konikiewicz1, Marcin Markowski2

1 Wroclaw University of Science and Technology,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

wojciech.konikiewicz@onet.pl

2 Department of Systems and Computer Networks,
Wroclaw University of Science and Technology,

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
marcin.markowski@pwr.edu.pl

Abstract
Firewalls are key elements of network security infrastructure. They should
guarantee the proper level of security and, at the same time, the satisfying
performance in order to not increase the packet delay in the network. In the
paper, we present the comparative study on performance and security of a few
firewall technologies including hardware, software and virtual solutions. Three
important criteria are considered: the maximal throughput of firewall, the
introduced delay and the ability to resist Denial of Service attacks. We report
results of experiments, present analysis and formulate a few practical
conclusions.

Key words: firewall, virtual firewall, network security, network performance,
DoS attacks

1 Introduction

The security of telecommunication networks is one of the most important
aspects of scientific research. When information is transmitted between users
and servers, it often becomes the object of desire for unauthorized persons -
the hackers, attempting to steal sensitive user data. Information security is
especially important when the number of devices and end systems increases.
IPS, IDS, anti-virus programs and, finally, firewalls are often placed on the
border between the private and public networks. Choosing the proper security
device is very important because it affects all the traffic passing between the
local and external network.

63
10.1515/jacsm-2017-0003

50

Analysis of Performance and Efficiency ...

Nowadays, firewalls are a mandatory part of the computer network in
businesses, offices and other institutions. With the advancement of
technology, these devices are constantly being developed. Their operation
must be effective, quick and not noticeable to the potential users. There are
many solutions available to protect the IT system. Some manufacturers
provide their solutions for free, such as the programmable firewalls on Linux
platforms, but there are also very expensive devices such as Cisco or Juniper
hardware firewalls.

This paper focuses on selection of the best type of firewall for particular
application. Optimal firewall should introduce the smallest packet latency in
the network and, at the same time, provide a good protection level for user
data. The goal of this work is to perform a comparative analysis of three types
of firewall: two hardware solutions (Cisco ASA and Juniper), software
solution installed on Linux (IPTables) and the virtual one(VyOS),
implemented on a virtual machine. An analysis of the impact of individual
firewalls on packet traffic in the network is based on bandwidth and server
response time. We also analyze the level of resistance against the network
attacks.

2 Firewall technologies

Firewall is a network device usually located at the border between two
different (e.g. internal and external) computer networks. This is usually the
place where the internal communication network of an enterprise is connected
with the Internet. Its main task is to protect the network and data processed
inside LAN. The firewall filters incoming and outgoing traffic. Thanks to
certain rules, it is able to eliminate the unwanted traffic generated, for
example, by an attacker. Firewalls control communication by deciding which
packet is consistent with the security policy. Firewalls also isolate the
restricted areas from the rest of the network. Firewall technologies can be
divided into four basic groups: packet filtering, state control, network address
translation (NAT), and proxy [2]:

− In packed filtering mode, device filters all incoming and outgoing
packets, looking into the header information, i.e. IP addresses and port
numbers. With defined Access Control List (ACL), only packets that are
reflected in the security policy are allowed. It is important to start
configuring the ACL with general (default) blocking rule, and after that
to define which kind of traffic should be accepted. Filtering rules are
usually defined separately for incoming and outgoing traffic [11].

− Statefull firewall is a powerful packet filtering technology, with control
of the particular connection attributes. Unlike the packet filtering, it
allows to monitor the connection status: whether the connection is in the

51

Konikiewicz W., Markowski M.

initiation, during data transfer, or in the termination state. Firewall tracks
all the passing TCP sessions and drops packets, whose do not match any
of known connections. Typically, the TCP rule is used for matching. This
feature introduces a very high level of security, and it also offers
satisfying transmission speed [14].

− Network Address Translation converts IP source (inside LAN) addresses
into other (outside) addresses. This mechanism works on both sides, i.e.
both outgoing and incoming packets are subject to this operation. This
service does not have any built-in security services, but it allows to hide
the internal architecture. Outbound packets live the local network with
another IP address, so that the person or the external traffic tracking
device is not able to see the local area network infrastructure [13].

− Proxy Firewall - this is a software package that gives an indirect access
to the Internet. Communication on the network with the proxy server is
split into two sessions: session between client and proxy service and
session between proxy and remote destination server [14]. Client cannot
connect directly to any server located in an external network.

− Hybrid Firewall is a combination of the above types of firewalls. In most
applications it offers simultaneous packet filtering, the proxy services
and allows to monitor the network traffic.

While the structure of the network is growing, the security devices evolve.

At the turn of several years, three main types of firewall architecture (Figure
1) were created [11]:

− Hardware - a physical device that has its own resources: CPU, RAM,
disk space. Similar to the router, having its own operating system.

− Software - a platform implemented on an existing operating system,
using the resources of the server on which the OS is installed.

− Virtual - implemented as a virtual machine, most commonly used for
packet filtering in SDN (Software Defined Networks) and for data
protection in the cloud services. Thanks to the virtualization layer it is
possible to change the hardware resources assigned to the machine [12].

Figure 1. Comparison of firewall architectures

52

Analysis of Performance and Efficiency ...

The hardware firewall is a stand-alone network device. It has dedicated
components and the resources that it possesses are optimally tailored for
correct and rapid work. Selecting a specific model of a hardware firewall, the
manufacturers technical documentation should be carefully analyzed. An
important feature of the hardware firewalls is that they are not dependent on
third-part software. A software firewall is typically represented by a server
with two network interfaces and a special application that is responsible for
such functions as packet filtering, NAT or proxy. It controls the network
traffic using configured bridge mode interfaces. All packets passing from the
one subnet to the other are filtered according to the rules written by the
administrator. Software firewalls do not have their dedicated resources. They
use the resources of the operating system on which they are installed and
cannot operate automatically. Software firewalls are very flexible, they can be
extended with additional modules for proper operation, although their
configuration is much more difficult since the majority of programs have only
a textual interface. The advantage of the software firewall is that many free
versions are available in the Internet. Virtual machines are running an
environment monitored by the hypervisor. When multiple machines are
running within a single virtual environment, a virtual network including all
the physical network elements (routers, switches, and firewalls) is created [1].
Virtual firewall is responsible for the security of virtual host communication,
but also for communication between the physical and virtual networks. Some
virtual firewalls integrate additional network features such as VPN or QoS.
Virtual firewalls do not have dedicated hardware resources but use the
resources provided by the virtualization layer. The advantage of such
solutions is the flexibility to change the hardware parameters of each machine.

3 Related Works

While surveying the scientific papers, we will not find an article or book
comparing all types of firewalls. The main topics of the research are the
optimization of device operation and the virtualization of particular elements
of the backbone network. In [1] Author describes the use of the virtual gates
and shows the basic differences between traditional and software firewalls.
The advantages of non-physical applications, as well as the disadvantages of
these technologies, are analyzed. The article does not present any exhaustive
comparison, it just proposes the area of application of considered gate. Also
the structure of the virtual network in which this device could be implemented
have been proposed. In [2] Authors compare a few types of firewall
technologies: packet filtering, statefull firewall, proxy, and hybrid firewall.
The article does not contain any simulation data and therefore does not
indicate the best system. Authors focused on the description on how the

53

Konikiewicz W., Markowski M.

firewall works and what its advantages are. The second part of the article
deals with the subject of intrusion detection and prevention systems. The
summary of the article is a table with the advantages and disadvantages of
considered technologies.

Comparison of hardware and software firewall may be found in [3]. Cisco
ASA 5500 (hardware), Check Point SPLAT (software) and Open BSD PF
(software) were verified against the simulated DDoS (Distributed Denial of
Service) attacks. Authors have shown that none of the firewalls are immune to
this kind of threat. The results presented in the publication have been based on
laboratory simulations and summarized in the table. According to the tests, all
the firewalls showed similar performance, but SPLAT was the best one, able
to survive 15 minutes attack. Another important parameter measured during
this simulation was the CPU consumption level, best results were obtained for
Cisco ASA. Devices listed in the above article are also the subject of research
in papers [9] and [10]. Authors present a simulation-based comparison on the
HTTP, FTP, UDP packet throughput and the number of possible connections.
In [9] the security level of devices was also compared and some
considerations on the degree of complexity of configuration, important when
choosing a device by less experienced administrators, were presented. As the
results have shown, both Cisco ASA and Check Point are doing very well
with packet filtering, but Cisco hardware is the best one when taking into
account the offered bandwidth. Paper [4] deals with the topic of firewalls,
from definition to simulation. The study focuses on comparing commercial
and free software firewalls. It includes both platforms configured under Unix
operating systems (Linux, BSD, Solaris) and Windows (WS 2003). That work
is based on an extensive simulation part, which is summarized by the graphs
showing the packet delay dependence on the number of connections and the
size of the packets. Summary of publications is a presentation of the
disadvantages and advantages of each platform. The main advantage of the
article is the well written theoretical part. The other articles discussing the
subject of firewall comparison are [5] and [6]. Both compare hardware
firewalls with software ones, but in [5] the considerations are purely
theoretical. Author of [6] have investigated Cisco hardware firewall and
platforms implemented on Linux. The comparison is based only on the data
provided by the manufacturer and security tests made with basic security tools
such as nmap. Very similar topic, a comparison of a firewall implemented on
the Linux platform and the Cisco 2621 firewall, is addressed in [8]. That study
shows the number of TCP packets passing through a device per unit of time.
Definitely better results were obtained for Linux which, for the number of
filtration principles 0-200, achieved two times higher bandwidth. Article [7]
contains a comparison of the firewalls built into operating systems. Authors
have generated identical traffic directed to two servers (Windows and Linux)

54

Analysis of Performance and Efficiency ...

and investigated the CPU utilization. The results show that firewalls
significantly affect the load of the platform on which they are implemented.

There are many works, publications and articles describing firewalls, but
there is a restricted number of comparisons between all types of devices.
Usually the hardware and software firewall comparison may be found. Since
virtual firewalls are not yet very common then, in the literature, the
architecture of the virtual systems is often considered. Comparisons mostly
refer to Cisco devices as the leading physical ones, OpenBSD and Check
Point as a software firewalls.

In this work we examine three types of firewalls: hardware, software, and
virtual. We provide the comparative analysis and conclude, which of solutions
ensure the best performance and the minimal impact on the network traffic.

4 Problem formulation and experimental setup

A network topology built of two computers and a traffic filter device
(hardware firewall or dual-homed server with software/virtual firewall) was
implemented for the experiments (Figure 2). One of the computers (SERVER)
served as a server and was placed behind the firewall internal interface, the
second one (PC) was placed in an external network zone. All analyzed
firewalls were configured in the similar way in order to make the result
comparable. The whole infrastructure was connected using category 5e UTP
twisted pair copper cable.

Figure 2. The network topology

Four firewalls were analyzed: IPTables, (software firewall), Juniper
Netscreen 50 and Cisco ASA 5505 (hardware) and VyOS (virtual firewall).
IPTables is a free software that is installed on the Linux operating system. It

55

Konikiewicz W., Markowski M.

has the ability to work from the second to the seventh ISO/OSI layer, then it
can work as a comprehensive firewall. With the open license it is constantly
being expanded with additional functionalities and support for additional
protocols. The basic feature of IPTables used in this study is the packet
filtering. It is based on the rules in the strings (equivalent of access-list),
which are placed in the tables. The rules are the most important elements in
the firewall configuration, because they determine whether the packet is
accepted (ACCEPT) or rejected (DROP) [7].

The Juniper Netscreen 50 is a firewall with four Ethernet ports with a
maximum throughput of 100 Mbps. The device supports two operating
modes: transparent firewall and router with built-in firewall. In the former
one, device acts as a second layer bridge and is invisible to other devices in
the network. It filters packets according to established rules, but it has NAT
disabled, because it cannot interfere with packet addressing as a second layer
device. In the latter mode the firewall operates in the third layer and requires
configuring the IP addresses of the individual interfaces. This allows NAT to
be started [15]. An additional feature of Netscreen 50 is the ability to run the
VPN functionality.

Cisco ASA 5505 has eight 10/100 Mbps network ports, two of them with a
Power over Ethernet (PoE) functionality. Network interfaces of the firewall
work in Layer 2 only, then it is impossible to configure IP addresses directly
on the interfaces – they must be assigned to the appropriate virtual interfaces
(VLANs). It is possible to assign each interface to another VLAN and isolate
the subnets. VLANs can communicate with each other directly through the
firewall, where packet filtering is applied. Devices on the same subnet
exchange packets bypassing filtering. In order to divide the network into
trusted and non-trusted interfaces, the security levels are defined and labeled
from 0 to 100. The higher number, the higher security level. It is important
that higher levels may access the lower-level interfaces, but not vice versa
[16].

VyOS is a virtual platform with router and firewall functionalities, created
in 2013 as a free network operating system. It is based on Debian and Quagga
platform. VyOS configuration is provided through the CLI interface. It can be
installed on virtual machines or on the cloud-based platforms. VyOS has been
equipped with all the features of a physical firewall: packet filter, NAT
service, VPN, and routing mechanisms. It is suitable for large and small
networks as an alternative to physical devices, what remarkably reduce costs
[17].

The common network diagnostic tools: iperf, ping and hping were used for
the experiments. Iperf is a free network tool for measuring network
bandwidth. It supports various protocols including: TCP and UDP. Thanks to
the large number of parameters, it is very useful. For each performed test, it
generates a report containing the connection throughput in the subsequent

56

Analysis of Performance and Efficiency ...

time units [19]. Ping is a popular program used by the computer network
administrators to diagnose the network performance, it is based on ICMP
protocol. It allows to verify the connection between hosts, and measure the
number of lost packets [18]. Hping is a tool for networks and devices
analyzing. It can serve as a package generator and is often used for network
audits. It supports protocols such as TCP and UDP. Additionally, it has
features for sending files and the ability of package route tracking. Hping was
originally created as a tool for the network testers, but is currently used by
hackers as well [20], as able to carry out the DoS attacks (this option was used
during experiments).

5 Experiments and Results

The goal of experiments was to obtain an comparative analysis of firewall
solutions on their performance, efficiency and resistance to Denial of Service
attacks. Considered criteria taken into account were: the throughput of
firewall (in Mb/s), delay introduced by firewall and time of surviving during
DoS attack.

For throughput investigations, Iperf tool was used to generate a high
intensity traffic from PC to Server. In the consecutive experiments, different
packed sizes l (in Bytes) were used, the intensity (in Mb/s) of generated traffic
was always the same, equal to maximal possible line speed (around 100
Mb/s). The higher value of l, the smaller number of packets was sent during
one second. As a baseline we have also measured a throughput in the direct
connection between PC and Server (without firewall). Each single experiment
lasted 60 seconds. Experiment with each packet size were performed a few
times and results for each second were averaged. They are presented in
Figures 3-6. It may be observed that the throughput of firewalls is unstable for
l=200B and l=500B (Figure 3 and Figure 4). For l=200B the measured
throughput was between 20 Mbps (for virtual firewall VyOs) and 80 Mbps.
For l=500B (Figure 4) the significantly higher throughput was observed for
VyOS (around 45 Mb/s), slighter improvement was noticed for the other
firewalls, as well as for direct connection. Comparing results for both packet
sizes it may be concluded, that the number of packets processed during one
second is much about the same in case of VyOS – the higher number of
packets, the higher throughput (in Mb/s).

57

Konikiewicz W., Markowski M.

Figure 3. Comparison of the throughput for l=200B

Unexpectedly, the throughput offered by PC-based firewall (IPTables) was
often higher than offered by dedicated network device (Juniper). The above
observation is very interesting, since hardware firewalls are considered as
offering much better performance in comparison with the multi-purpose
computers. Also the throughput for the direct connection is very uneven, for
l=200 the throughput of IPTables seems to be higher than throughput of direct
connection. We may conclude, that for small packet size (and high number of
packets per second) the performance of the PC network card or properties of
TCP protocol (devices receives new packets and, at the same time, have to
send acknowledgments of received packets) may hardly affect the results.

Figure 4. Comparison of the throughput for l=500B

58

Analysis of Performance and Efficiency ...

Analyzing results for bigger packet sizes (Figure 5 and Figure 6), it can be
observed that the throughput for ASA and IPTables are very close to the real
bandwidth of the direct connection between computers. Those firewalls do not
introduce any decrease in the network performance. A little bit worse and less
stable results were obtained for Juniper. The lowest performance was noticed
for the virtual firewall, where the value of throughput oscillated between 65
and 80 Mbps. For l=1500B, throughput of hardware firewall tends to be
unstable. Comparing results presented in the Figures 5 and 6 we may
conclude, that packet size equal to 1 kB was optimal in prepared testbed
environment.

Average (taking into account values from each second of each experiment)
values of throughput for all firewalls and sizes of packet are presented in the
Figure 7. Improvement in the firewall performance with the growing size of

Figure 5. Comparison of the throughput for l=1000B

59

Konikiewicz W., Markowski M.

Figure 6. Comparison of the throughput for l=1500B

packet may be clearly seen. For l=200B all firewalls offered the least
performance, but with the increase of the packet length the performance
increased. For l=1000 and l=1500 the throughput reached a maximum value
equal to the direct connection one. The graph shows that the slowest firewall
turned out to be a virtual firewall, and hardware and software ones achieved
very similar results.

Figure 7. Average throughput for all firewalls

60

Analysis of Performance and Efficiency ...

Figure 8. Ping response time for packet size 64B

Figure 9. Ping response time for packet size 1000B

During the second part of the study the server response time was
examined. The research was done using a ping program showing the time the
packet reaches its destination. Results of these studies show which firewall
introduces the greatest latency in the network. Experiment were performed in
the following way. Each device was examined twice, with two packet sizes:
64 B and 1000 B. Each experiment (with each packed size) last for 60
seconds. As it may be observed in the results (Figures 8 and 9), the highest
delay was observed for VyOS. Delay introduced by virtual firewall definitely

61

Konikiewicz W., Markowski M.

differs from the others. The smallest delays were observed for ASA and
IPTables. The average response time for packet size equal to 64B was at the
level of 1ms (for ASA, Juniper, IPTables) and 2.5ms for VyOS. In the latter
study (ping size 1000B) the response time increased to 1.25ms for Juniper and
IPTables, but we have observed a little decrease in the delay introduced by
VyOS. Result for all examined firewall became proportionate.

Comparing results for all experiments it is clearly seen that virtual firewall
may be pointed out as the worst solution, taking into account the performance
and efficiency. It may be due to the fact that the virtual machine does not have
its own built-in interfaces but uses communication interfaces of the physical
machine on which it is installed. Transmitting packet through each physical
port is there an additional delay. The virtual firewall could achieve better
results when tested in the virtual network, which is its dedicated environment.

Finally, the ability to survive the Denial of Service attack was examined
for all firewalls. DoS attack was carried out for 30 minutes with hping3 tool.
At the same time the availability of network connection to firewall was
verified using ping requests. VyOS, ASA and Juniper remained available and
operational during attacks. The CPU utilization around 100% was observed
for each of them, but ping responses were received all the time during
experiments. Unlike the others, IPTables stopped to response after 35
seconds, and hanged out after next 15 seconds. The restart of operating system
and renewing of configuration was necessary in order to restore firewall
functionality. It is worth to notice, that in case of software firewall the DoS
attack was pointed at the operating system (Linux in this case), not at the
firewall itself.

6 Conclusion

In the paper the performance and security of the hardware, software and
virtual firewalls have been analyzed. The analysis was based on experiments
in the prepared network environment. The considered criteria were: the
throughput of the firewall, the introduced delay of network packets and the
resistance to DoS attacks. A few important, practical conclusions were drawn
from the results of experiments. It have been observed that the throughput of
firewalls strongly depends on the size of packet transmitted over the network.
Highest throughput, very close to the capacity of direct connection, was
noticed for packets length equal and greater than 1 kB, for smaller packet
lengths the throughput was considerably less. We may conclude that the
optimal size of packet is 1 kB, while using network firewalls. Very interesting
conclusion is the fact that the performance of the software based firewall was
equal to the performance of hardware ones. In prepared physical environment
the performance of virtual solution was lowest during all experiments.

62

Analysis of Performance and Efficiency ...

Hardware and virtual firewalls turned out to be resistant to Denial of Service
attacks. As documentation shows, they have built-in mechanisms for DoS
protection. We became convinced that those mechanisms are effective. The
level of security of the software firewall is, in fact, equal to the security level
of the host operating system.

References

1. Ramaswamy Chandramouli, 2016, Secure Virtual Network Configuration for
Virtual Machine (VM) Protection, NIST Special Publication 800-125B.

2. Wankhade A., Chatur P.N., 2014, Comparison of Firewall and Intrusion
Detection System, International Journal of Computer Science and Information
Technologies, Vol. 5 (1), pp. 674-678.

3. C. Sheth, R. Thakker, 2013, Performance Evaluation and Comparison of
Network Firewalls under DDoS Attack, Computer Network and Information
Security, Vol. 12, pp. 60-6.7

4. T. Höfler, C. Burkert and M. Telzer, 2004, "Comparative Firewall Study,"
Chemnitz Univeristy of Technology, Chemnitz.

5. Panchal R., 2005, Firewalls: Hardware vs. Software, SE 4C03.
6. Krajnik B., 2004, Firewalls with Filtering in Application Layer and Quality of

Services, Engineer Diploma Thesis, Warsaw University of Technology.
7. Gouri Shankar Prajapati, Nilay Khare, 2015, A Comparative Study of Software

Firewall on Windows and Linux Platform, International Journal of Computer
and Technology, Vol. 14(8), pp. 5967-5978.

8. S. Patton, D. Doss and W. Yurcik, 2000, Open source versus commercial
firewalls: functional comparison, Proceedings 25th Annual IEEE Conference on
Local Computer Networks. LCN 2000, Tampa, FL, pp. 223-224.

9. C. Sheth and R. Thakker, 2011, Performance Evaluation and Comparative
Analysis of Network Firewalls, 2011 International Conference on Devices and
Communications (ICDeCom), Mesra, pp. 1-5.

10. Y. Yongxin, 2011, The comparative study on network firewalls performance,
2011 IEEE 3rd International Conference on Communication Software and
Networks, Xi'an, pp. 427-430.

11. Shinder T.W., Shimonski R.J., Shinder D.L., 2003, The Best Damn Firewall
Book Period” Syngress Publishing, Rockland.

12. Decusatis C., Mueller P., 2014, Virtual Firewall Performance as a Waypoint on
a Software Defined Overlay Network, 2014 IEEE Intl Conf on High
Performance Computing and Communications, 2014 IEEE 6th Intl Symp on
Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded
Software and Systems (HPCC,CSS,ICESS), Paris, pp. 819-822.

13. Comer D.E., 2012, Computer networks and Internets, Helion, Gliwice.
14. Krysiak K., 2005,. Sieci komputerowe. Kompendium. Helion, Gliwice.

63

Konikiewicz W., Markowski M.

15. NetScreen Technologies Inc., Juniper Netscreen Instaler’s Guide, Version 4.
16. Gałęzowski G., 2010, Cisco ASA 5505 Podstawy konfiguracji, HAKING, Vol.

12/2010.
17. wiki.vyos.net
18. linux.die.net
19. iperf.fr/
20. blackmoreops.com, Denial-of-service Attack – DoS using hping3 with spoofed

IP in Kali Linux, 2015.

JACSM 2017, Vol. 9, No. 1, pp. 65 -

65

CHR: DYNAMIC FUNCTIONAL CONSTRAINTS

CHECKING IN R

Konrad Grzanek

IT Institute, University of Social Sciences

9 Sienkiewicza St., 90-113 Lodz, Poland

kgrzanek@spoleczna.pl

Abstract

Dynamic typing of R programming language may issue some quality problems in

large scale data-science and machine-learning projects for which the language is

used. Following our efforts on providing gradual typing library for Clojure we

come with a package chR - a library that offers functionality of run-time type-

related checks in R. The solution is not only a dynamic type checker, it also helps

to systematize thinking about types in the language, at the same time offering high

expressivenes and full adherence to functional programming style.

Keywords: Formal software verification, software quality, dynamic type-checking,

functional programming, category theory, R

1 Introduction

Writing software in dynamically typed programming languages requires as much atten-

tion with respect to types of expressions as when using a statically and strongly typed

one ([2], [1]). One popular and apparently natural approach is to use gradual typing - a

process of selectively adding type checks to expressions, mostly to the critical parts of

computer programs. With the approach a programmer can decide where to put checks

and which parts are so “obvious”, that they do not have to be verified.

R programming language [5] has been growing in use in recent years, together

with a growth of computer science and software engineering sub-domains to which

it has been targeted: data science and statistical- (more broadly machine-) learning.

Unfortunately, it lacks a decent type-checking solution. The great assertthat package

[7] addresses a slightly different problem: putting generic run-time assertions into R

codes. We need a package with the following properties:

– being deeply rooted in functional programming [4] and using notions from the

category theory

78
10.1515/jacsm-2017-0004

66

 Low-Cost Dynamic Constraint ...

– overall consistency with the dynamic and in a way Lispy nature of R programming

language and adherence to functional programming style with purrr library [6]

– being as fast as possible, using checks that use as low-level elements of the R base

(standard library) as possible

– expressiveness, ease of use, and extendability

Our previous work on dependent typing resulted in a ch library ([11], [12], [13])

for Clojure programming language ([8], [9]). Following that we decided to create a

corresponding package for R. The package is called chR [10] and it is a subject of

further analysis in this paper.

2 Essentials of the chR Library

The heart of our solution is ch procedure. In essence it executes a predicate (pred) on

an argument x. If the predicate returns false value (or a value effectively) effectively

equal to false, an error is raised. Otherwise x is returned. This behavior allows a greater

composability and support for functional programming style. We may easily put any

ch(eck) in a pipeline of data processing procedures, as will be presented further.

Procedure ch works also in a predicate-only mode. This mode is necessary when a

ch(eck) is used as a sub-component of a larger one. Below we have the ch code together

with an error generator (errMessage):

errMessage <- function(x) {
r <- paste(capture.output(str(x)), collapse = "\n")
paste0(" ch(eck) failed on\n", r)

}

#’ Executes a ch(eck) of pred on x

#’ @export

ch <- function(pred, x, asPred = FALSE) {
r <- pred(x)

if (asPred) return(r)

if (!r) stop(errMessage(x))

x

}

Effective use of chR library starts with the following procedure that takes a predicate

and returns a corresponding ch(eck). The returned ch(eck) takes an argument x and

applies ch working by default in non-pred mode:

#’ Returns a ch(eck) based on the pred

#’ @export

chP <- function(pred) {
function(x, asPred = FALSE) ch(pred, x, asPred)

}

67

Grzanek K.

– overall consistency with the dynamic and in a way Lispy nature of R programming

language and adherence to functional programming style with purrr library [6]

– being as fast as possible, using checks that use as low-level elements of the R base

(standard library) as possible

– expressiveness, ease of use, and extendability

Our previous work on dependent typing resulted in a ch library ([11], [12], [13])

for Clojure programming language ([8], [9]). Following that we decided to create a

corresponding package for R. The package is called chR [10] and it is a subject of

further analysis in this paper.

2 Essentials of the chR Library

The heart of our solution is ch procedure. In essence it executes a predicate (pred) on

an argument x. If the predicate returns false value (or a value effectively) effectively

equal to false, an error is raised. Otherwise x is returned. This behavior allows a greater

composability and support for functional programming style. We may easily put any

ch(eck) in a pipeline of data processing procedures, as will be presented further.

Procedure ch works also in a predicate-only mode. This mode is necessary when a

ch(eck) is used as a sub-component of a larger one. Below we have the ch code together

with an error generator (errMessage):

errMessage <- function(x) {
r <- paste(capture.output(str(x)), collapse = "\n")
paste0(" ch(eck) failed on\n", r)

}

#’ Executes a ch(eck) of pred on x

#’ @export

ch <- function(pred, x, asPred = FALSE) {
r <- pred(x)

if (asPred) return(r)

if (!r) stop(errMessage(x))

x

}

Effective use of chR library starts with the following procedure that takes a predicate

and returns a corresponding ch(eck). The returned ch(eck) takes an argument x and

applies ch working by default in non-pred mode:

#’ Returns a ch(eck) based on the pred

#’ @export

chP <- function(pred) {
function(x, asPred = FALSE) ch(pred, x, asPred)

}

For classes in R we have a chInstance ch(eck)s generator that uses a common in-

herits procedure belonging to R base:

#’ Returns a \code{inherits(., cls)} ch(eck)

#’ @export

chInstance <- function(class) chP(function(x)

inherits(x, class))

An intrinsic property of an expressive language (including an embedded one) is

composability. Our ch(eck)s compose. The three composition operators are logic-

oriented and they reflect the most basic logical operations. We have negation:

#’ Returns a ch(eck) that is a negation of the passed ch(eck)

#’ @export

chNot <- function(c) chP(function(x)

!c(x, asPred = TRUE))

Also, there is conjunction:

#’ Returns a ch(eck) that &s all the passed ch(eck)s

#’ @export

chAnd <- function(...) {
chs <- list(...)

chP(function(x) {
for (c in chs) if (!c(x, asPred = TRUE)) return (FALSE)

TRUE

})
}

and alternative:

#’ Returns a ch(eck) that |s all the passed ch(eck)s

#’ @export

chOr <- function(...) {
chs <- list(...)

chP(function(x) {
for (c in chs) if (c(x, asPred = TRUE)) return (TRUE)

FALSE

})
}

In the two latter ones we assume a non-restricted number of composed ch(eck)s.

3 Fundamental Ch(eck)s

Many functional programming languages rooted in category theory ([3]), e.g. Haskell,

use a unit type and unit value. Although R fully supports functional style of program-

68

 Low-Cost Dynamic Constraint ...

ming, it does not unify notion of no-values. We made an arbitrary decision to treat

NULL as unit value. The decision was based upon pragmatics in the technology. A

corresponding ch(eck) follows:

#’ \code{is.null} ch(eck)

#’ @export

chUnit <- chP(is.null)

#’ \code{!is.null} ch(eck)

#’ @export

chSome <- chP(function(x) !is.null(x))

The chSome ch(eck) is an opposite to chUnit, as can be seen above. In R program-

ming language we have both NULL as well as NA values. Thus, a separate ch(eck) for

NAs is needed:

#’ \code{is.na} ch(eck)

#’ @export

chNA <- chAnd(chScalar, chP(is.na))

For two-element Discriminated Union Types we have the following chEither ch(eck):

#’ Either ch(eck) where the left and right types are

#’ expressed by checks cl and cr

#’ @export

chEither <- function(cl, cr, x, asPred = FALSE)

chOr(cl, cr)(x, asPred)

that used with chUnit forms a Maybe ch(eck):

#’ Maybe ch(eck)

#’ @export

chMaybe <- function(c, x, asPred = FALSE)

chEither(chUnit, c, x, asPred)

Because R uses only vectorized values (and lists), we need ch(eck)s for scalars,

hereby treated as one-element atoms (vectors):

#’ Scalar \code{is.atomic} & \code{length == 1L}
#’ value ch(eck)

#’ @export

chScalar <- chP(function(x)

is.atomic(x) && length(x) == 1L)

With the new ch(eck) we can define e.g. a ch(eck) for either a String vector of any

length or a single String:

69

Grzanek K.

ming, it does not unify notion of no-values. We made an arbitrary decision to treat

NULL as unit value. The decision was based upon pragmatics in the technology. A

corresponding ch(eck) follows:

#’ \code{is.null} ch(eck)

#’ @export

chUnit <- chP(is.null)

#’ \code{!is.null} ch(eck)

#’ @export

chSome <- chP(function(x) !is.null(x))

The chSome ch(eck) is an opposite to chUnit, as can be seen above. In R program-

ming language we have both NULL as well as NA values. Thus, a separate ch(eck) for

NAs is needed:

#’ \code{is.na} ch(eck)

#’ @export

chNA <- chAnd(chScalar, chP(is.na))

For two-element Discriminated Union Types we have the following chEither ch(eck):

#’ Either ch(eck) where the left and right types are

#’ expressed by checks cl and cr

#’ @export

chEither <- function(cl, cr, x, asPred = FALSE)

chOr(cl, cr)(x, asPred)

that used with chUnit forms a Maybe ch(eck):

#’ Maybe ch(eck)

#’ @export

chMaybe <- function(c, x, asPred = FALSE)

chEither(chUnit, c, x, asPred)

Because R uses only vectorized values (and lists), we need ch(eck)s for scalars,

hereby treated as one-element atoms (vectors):

#’ Scalar \code{is.atomic} & \code{length == 1L}
#’ value ch(eck)

#’ @export

chScalar <- chP(function(x)

is.atomic(x) && length(x) == 1L)

With the new ch(eck) we can define e.g. a ch(eck) for either a String vector of any

length or a single String:

#’ \code{is.character} ch(eck)

#’ @export

chStrings <- chP(is.character)

#’ \code{chScalar} & \code{chStrings} ch(eck)

#’ @export

chString <- chAnd(chScalar, chStrings)

Another essential ch(eck) is for R functions:

#’ \code{is.function} ch(eck)

#’ @export

chFun <- chP(is.function)

This shortened presentation ends a section about the most common ch(ecks)s in chR

library. For more, please read Appendix A.

4 Registry of Ch(eck)s

Additionally the chR library (like its ancestor ch for Clojure) provides a registry of

ch(eck)s, that helps the programmer to understand, what kind of ch(eck)s an object or a

collection of objects fulfill. The registry is an associative container that can be used to

put a relation between a ch(eck) symbol (name) and the ch(eck):

CHSREG <- list()

#’ Registeres the ch(eck) using an optional name

#’ (ch(eck) name by default)

#’ @export

chReg <- function(ch, name = NA) { # BEWARE: THREAD UNSAFE

if (is.na(name)) name <- as.character(substitute(ch))

CHSREG[[as.character(name)]] <<- as.function(ch)

NULL

}

After we register selected ch(eck)s like below:

chReg(chUnit)

chReg(chScalar)

chReg(chString)

chReg(chStrings)

chReg(chFun)

we can ask the library about what kinds of ch(eck)s a given object fulfills:

70

 Low-Cost Dynamic Constraint ...

chR::chs(1:10)

[1] "chAtomic" "chInts" "chNatInts"

[4] "chNumerics" "chPosInts" "chSome"

[7] "chVector"

5 Supporting C++ Codes (via Rcpp)

Some of the ch(eck)s are better implemented in a low-level programming language.

Thankfully R supports easy extensions in C++ written in effective library Rcpp. In chR

the following procedure is defined to allow evaluation of predicates on vectors of any

(presumably numeric) types:

template<typename V, typename F>

static inline bool everyInVector(const V xs,

const F&& pred) {
const int n = xs.size();

for (int i = 0; i < n; i++)

if (!pred(xs[i])) return false;

return true;

}

The procedure is used to implement the predicates on vectors of doubles, as pre-

sented below:

//’ Returns true iff all the xs are positive

//’ @param xs vector to check

//’ @return true or false

//’ @export

// [[Rcpp::export]]

bool arePosDoubles(const DoubleVector xs) {
return everyInVector(xs, [](double d)

{ return d > 0; });
}

//’ Returns true iff all the xs are negative

//’ @param xs vector to check

//’ @return true or false

//’ @export

// [[Rcpp::export]]

bool areNegDoubles(const DoubleVector xs) {
return everyInVector(xs, [](double d)

{ return d < 0; });
}

71

Grzanek K.

chR::chs(1:10)

[1] "chAtomic" "chInts" "chNatInts"

[4] "chNumerics" "chPosInts" "chSome"

[7] "chVector"

5 Supporting C++ Codes (via Rcpp)

Some of the ch(eck)s are better implemented in a low-level programming language.

Thankfully R supports easy extensions in C++ written in effective library Rcpp. In chR

the following procedure is defined to allow evaluation of predicates on vectors of any

(presumably numeric) types:

template<typename V, typename F>

static inline bool everyInVector(const V xs,

const F&& pred) {
const int n = xs.size();

for (int i = 0; i < n; i++)

if (!pred(xs[i])) return false;

return true;

}

The procedure is used to implement the predicates on vectors of doubles, as pre-

sented below:

//’ Returns true iff all the xs are positive

//’ @param xs vector to check

//’ @return true or false

//’ @export

// [[Rcpp::export]]

bool arePosDoubles(const DoubleVector xs) {
return everyInVector(xs, [](double d)

{ return d > 0; });
}

//’ Returns true iff all the xs are negative

//’ @param xs vector to check

//’ @return true or false

//’ @export

// [[Rcpp::export]]

bool areNegDoubles(const DoubleVector xs) {
return everyInVector(xs, [](double d)

{ return d < 0; });
}

//’ Returns true iff all the xs are non-negative

//’ @param xs vector to check

//’ @return true or false

//’ @export

// [[Rcpp::export]]

bool areNonNegDoubles(const DoubleVector xs) {
return everyInVector(xs, [](double d)

{ return d >= 0; });
}

Accordingly, there are the preds for IntegerVector:

//’ Returns true iff all the xs are positive

//’ @param xs vector to check

//’ @return true or false

//’ @export

// [[Rcpp::export]]

bool arePosInts(const IntegerVector xs) {
return everyInVector(xs, [](int n)

{ return n > 0; });
}

//’ Returns true iff all the xs are negative

//’ @param xs vector to check

//’ @return true or false

//’ @export

// [[Rcpp::export]]

bool areNegInts(const IntegerVector xs) {
return everyInVector(xs, [](int n)

{ return n < 0; });
}

//’ Returns true iff all the xs are naturals (>= 0)

//’ @param xs vector to check

//’ @return true or false

//’ @export

// [[Rcpp::export]]

bool areNatInts(const IntegerVector xs) {
return everyInVector(xs, [](int n)

{ return n >= 0; });
}

What’s interesting is use of C++ lambdas in the procedures above. They are no-

cost an highly expressive. Their use is possible in C++11 and above. Current Rcpp

implementation supports that language standard.

72

 Low-Cost Dynamic Constraint ...

6 Cases of Use in Production Setting

Our library is currently used in at least three commercial products. The usefulness

of ch(eck)s can be seen in the following procedure, whose goal is to read employees’

absences information in a business intelligence project:

readAbsences <- function(file) chDT({
chString(file)

absncs <- fread(file) %>%

assertDTcolnames(ABSENCES_PROPS)

for (p in ABSENCES_DATE_PROPS)

set(absncs, j = p, value =

parseDates(parse_character(absncs[[p]])))

absncs %>% setDTcolorder(ABSENCES_PROPS)

setkey(absncs, "Employee Number")

absncs

})

The argument file is intended to be a String (chString(file) ch(eck)) and the result

of the procedure is a data.table object (chDT({. . .}) ch(eck)). Apparently, the system

of ch(eck)s not only increases software correctness, but also has a positive impact on

readability of codes.

References

1. Pierce B.C., 2002, Types and Programming Languages, 1st Edition, MIT Press,

ISBN-10: 0262162091, ISBN-13: 978-0262162098

2. Pierce B.C., 2004, Advanced Topics in Types and Programming Languages, MIT

Press, ISBN-10: 0262162288, ISBN-13: 978-0262162289

3. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

4. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in Com-

puter Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

5. R Core Team, 2017, R: A language and environment for statistical computing, R

Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

6. Henry L., Wickham H., 2017, purrr: Functional Programming Tools, R package

version 0.2.4, https://CRAN.R-project.org/package=purrr

7. Wickham H., 2017, assertthat: Easy Pre and Post Assertions, R package version

0.2.0, https://CRAN.R-project.org/package=assertthat

73

Grzanek K.

6 Cases of Use in Production Setting

Our library is currently used in at least three commercial products. The usefulness

of ch(eck)s can be seen in the following procedure, whose goal is to read employees’

absences information in a business intelligence project:

readAbsences <- function(file) chDT({
chString(file)

absncs <- fread(file) %>%

assertDTcolnames(ABSENCES_PROPS)

for (p in ABSENCES_DATE_PROPS)

set(absncs, j = p, value =

parseDates(parse_character(absncs[[p]])))

absncs %>% setDTcolorder(ABSENCES_PROPS)

setkey(absncs, "Employee Number")

absncs

})

The argument file is intended to be a String (chString(file) ch(eck)) and the result

of the procedure is a data.table object (chDT({. . .}) ch(eck)). Apparently, the system

of ch(eck)s not only increases software correctness, but also has a positive impact on

readability of codes.

References

1. Pierce B.C., 2002, Types and Programming Languages, 1st Edition, MIT Press,

ISBN-10: 0262162091, ISBN-13: 978-0262162098

2. Pierce B.C., 2004, Advanced Topics in Types and Programming Languages, MIT

Press, ISBN-10: 0262162288, ISBN-13: 978-0262162289

3. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

4. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in Com-

puter Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

5. R Core Team, 2017, R: A language and environment for statistical computing, R

Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

6. Henry L., Wickham H., 2017, purrr: Functional Programming Tools, R package

version 0.2.4, https://CRAN.R-project.org/package=purrr

7. Wickham H., 2017, assertthat: Easy Pre and Post Assertions, R package version

0.2.0, https://CRAN.R-project.org/package=assertthat

8. Emerick Ch., Carper B., Grand Ch., 2012, Clojure Programming, O’Reilly Media

Inc., ISBN: 978-1-449-39470-7

9. Fogus M., Houser Ch., 2014, The Joy of Clojure, Manning Publications; 2 edition,

ISBN-10: 1617291412, ISBN-13: 978-1617291418

10. Grzanek K., 2017, chR Github Repository, https://github.com/kongra/chR

11. Grzanek K., 2016, Low-Cost Dynamic Constraint Checking for the JVM, Journal

of Applied Computer Science Methods, 8(2), pp. 115-136, doi:10.1515/jacsm-2016-

0008

12. Grzanek K., 2017, ch GitHub Repository, https://github.com/kongra/ch

13. Grzanek K., 2017, ch Clojars Page, https://clojars.org/kongra/ch

A Appendix: Selected Pre-defined Ch(eck)s

#’ \code{is.logical} ch(eck)

#’ @export

chBools <- chP(is.logical)

#’ \code{chScalar} & \code{chBools} ch(eck)

#’ @export

chBool <- chAnd(chScalar, chBools)

#’ \code{is.integer} ch(eck)

#’ @export

chInts <- chP(is.integer)

#’ \code{chScalar} & \code{chInts} ch(eck)

#’ @export

chInt <- chAnd(chScalar, chInts)

#’ \code{is.double} ch(eck)

#’ @export

chDoubles <- chP(is.double)

#’ \code{chScalar} & \code{chDoubles} ch(eck)

#’ @export

chDouble <- chAnd(chScalar, chDoubles)

#’ \code{is.complex} ch(eck)

#’ @export

chComplexes <- chP(is.complex)

74

 Low-Cost Dynamic Constraint ...

#’ \code{chScalar} & \code{chComplexes} ch(eck)

#’ @export

chComplex <- chAnd(chScalar, chComplexes)

#’ \code{is.numeric} ch(eck)

#’ @export

chNumerics <- chP(is.numeric)

#’ \code{chScalar} & \code{chNumerics} ch(eck)

#’ @export

chNumeric <- chAnd(chScalar, chNumerics)

#’ \code{chInts} & > 0 ch(eck)

#’ @export

chPosInts <- chAnd(chInts, chP(arePosInts))

#’ \code{chInt} & > 0 ch(eck)

#’ @export

chPosInt <- chAnd(chInt, chP(arePosInts))

#’ \code{chDoubles} & > 0 ch(eck)

#’ @export

chPosDoubles <- chAnd(chDoubles, chP(arePosDoubles))

#’ \code{chDouble} & > 0 ch(eck)

#’ @export

chPosDouble <- chAnd(chDouble, chP(arePosDoubles))

#’ \code{chInts} & < 0 ch(eck)

#’ @export

chNegInts <- chAnd(chInts, chP(areNegInts))

#’ \code{chInt} & < 0 ch(eck)

#’ @export

chNegInt <- chAnd(chInt, chP(areNegInts))

#’ \code{chDoubles} & < 0 ch(eck)

#’ @export

chNegDoubles <- chAnd(chDoubles, chP(areNegDoubles))

#’ \code{chDouble} & < 0 ch(eck)

#’ @export

chNegDouble <- chAnd(chDouble, chP(areNegDoubles))

#’ \code{chInts} & >= 0 ch(eck)

75

Grzanek K.

#’ \code{chScalar} & \code{chComplexes} ch(eck)

#’ @export

chComplex <- chAnd(chScalar, chComplexes)

#’ \code{is.numeric} ch(eck)

#’ @export

chNumerics <- chP(is.numeric)

#’ \code{chScalar} & \code{chNumerics} ch(eck)

#’ @export

chNumeric <- chAnd(chScalar, chNumerics)

#’ \code{chInts} & > 0 ch(eck)

#’ @export

chPosInts <- chAnd(chInts, chP(arePosInts))

#’ \code{chInt} & > 0 ch(eck)

#’ @export

chPosInt <- chAnd(chInt, chP(arePosInts))

#’ \code{chDoubles} & > 0 ch(eck)

#’ @export

chPosDoubles <- chAnd(chDoubles, chP(arePosDoubles))

#’ \code{chDouble} & > 0 ch(eck)

#’ @export

chPosDouble <- chAnd(chDouble, chP(arePosDoubles))

#’ \code{chInts} & < 0 ch(eck)

#’ @export

chNegInts <- chAnd(chInts, chP(areNegInts))

#’ \code{chInt} & < 0 ch(eck)

#’ @export

chNegInt <- chAnd(chInt, chP(areNegInts))

#’ \code{chDoubles} & < 0 ch(eck)

#’ @export

chNegDoubles <- chAnd(chDoubles, chP(areNegDoubles))

#’ \code{chDouble} & < 0 ch(eck)

#’ @export

chNegDouble <- chAnd(chDouble, chP(areNegDoubles))

#’ \code{chInts} & >= 0 ch(eck)

#’ @export

chNatInts <- chAnd(chInts, chP(areNatInts))

#’ \code{chInt} & >= 0 ch(eck)

#’ @export

chNatInt <- chAnd(chInt, chP(areNatInts))

#’ \code{chDoubles} & >= 0 ch(eck)

#’ @export

chNonNegDoubles <- chAnd(chDoubles, chP(areNonNegDoubles))

#’ \code{chDouble} & >= 0 ch(eck)

#’ @export

chNonNegDouble <- chAnd(chDouble, chP(areNonNegDoubles))

#’ \code{chInt} & even? check

#’ @export

chEvenInt <- chAnd(chInt, chP(function (x) x %% 2L == 0L))

#’ \code{chInt} & odd? check

#’ @export

chOddInt <- chAnd(chInt, chP(function (x) x %% 2L != 0L))

#’ \code{is.list} ch(eck)

#’ @export

chList <- chP(is.list)

#’ \code{is.vector} ch(eck)

#’ @export

chVector <- chP(is.vector)

#’ \code{is.factor} ch(eck)

#’ @export

chFactor <- chP(is.factor)

#’ \code{is.data.frame} ch(eck)

#’ @export

chDF <- chP(is.data.frame)

#’ \code{data.table::is.data.table} ch(eck)

#’ @export

chDT <- chP(data.table::is.data.table)

#’ Returns a check for the data.table having exactly

#’ n rows

76

 Low-Cost Dynamic Constraint ...

#’ @export

chDTn <- function(n) {
chNatInt(n)

chAnd(chDT, chP(function(dt) nrow(dt) == n))

}

#’ Returns a check for the data.table having exactly

#’ 0 or n rows

#’ @export

chDT0n <- function(n) {
chNatInt(n)

chAnd(chDT, chP(function(dt) {
nr <- nrow(dt)

nr == 0L || nr == n

}))
}

#’ Ch(eck) for a single-row data.table

#’ @export

chDT1 <- NULL

#’ Ch(eck) for an empty or single-row data.table

#’ @export

chDT01 <- NULL

#’ \code{ggplot2::is.ggplot} ch(eck)

#’ @export

chGgplot <- chP(ggplot2::is.ggplot)

#’ \code{tibble::is.tibble} ch(eck)

#’ @export

chTibble <- chP(tibble::is.tibble)

#’ \code{is.array} ch(eck)

#’ @export

chArray <- chP(is.array)

#’ \code{is.atomic} ch(eck)

#’ @export

chAtomic <- chP(is.atomic)

#’ \code{is.recursive} ch(eck)

#’ @export

chRecursive <- chP(is.recursive)

77

Grzanek K.

#’ @export

chDTn <- function(n) {
chNatInt(n)

chAnd(chDT, chP(function(dt) nrow(dt) == n))

}

#’ Returns a check for the data.table having exactly

#’ 0 or n rows

#’ @export

chDT0n <- function(n) {
chNatInt(n)

chAnd(chDT, chP(function(dt) {
nr <- nrow(dt)

nr == 0L || nr == n

}))
}

#’ Ch(eck) for a single-row data.table

#’ @export

chDT1 <- NULL

#’ Ch(eck) for an empty or single-row data.table

#’ @export

chDT01 <- NULL

#’ \code{ggplot2::is.ggplot} ch(eck)

#’ @export

chGgplot <- chP(ggplot2::is.ggplot)

#’ \code{tibble::is.tibble} ch(eck)

#’ @export

chTibble <- chP(tibble::is.tibble)

#’ \code{is.array} ch(eck)

#’ @export

chArray <- chP(is.array)

#’ \code{is.atomic} ch(eck)

#’ @export

chAtomic <- chP(is.atomic)

#’ \code{is.recursive} ch(eck)

#’ @export

chRecursive <- chP(is.recursive)

#’ \code{is.object} ch(eck)

#’ @export

chObject <- chP(is.object)

#’ \code{is.matrix} ch(eck)

#’ @export

chMatrix <- chP(is.matrix)

#’ \code{is.table} ch(eck)

#’ @export

chTable <- chP(is.table)

#’ \code{is.environment} ch(eck)

#’ @export

chEnv <- chP(is.environment)

#’ \code{is.call} ch(eck)

#’ @export

chCall <- chP(is.call)

#’ \code{is.expression} ch(eck)

#’ @export

chExpr <- chP(is.expression)

#’ \code{is.symbol} ch(eck)

#’ @export

chSymbol <- chP(is.symbol)

#’ \code{s == ""} ch(eck) for String,

#’ deliberately not chReg-ed

#’ @export

chEmptyString <- chAnd(chString, chP(function(s) s == ""))

#’ \code{s != ""} ch(eck) for String,

#’ deliberately not chReg-ed

#’ @export

chNonEmptyString <- chNot(chEmptyString)

#’ Blank-ness ch(eck) for String,

#’ deliberately not chReg-ed

#’ @export

chBlank <- chAnd(chString, chP(function(s)

is.na(readr::parse_character(s))))

#’ Non blank-ness ch(eck) for String,

78

 Low-Cost Dynamic Constraint ...

#’ deliberately not chReg-ed

#’ @export

chNonBlank <- chNot(chBlank)

#’ \code{lubridate::is.Date} ch(eck)

#’ @export

chDates <- chP(lubridate::is.Date)

#’ \code{chScalar} & \code{chDates} ch(eck)

#’ @export

chDate <- chAnd(chScalar, chDates)

chReg(chDate)

JACSM 2017, Vol. 9, No. 1, pp. 79 -

79

APPLICATION OF MOLDFLOW SIMULATION
 IN INJECTION MOLDING OF PLASTIC TANK

Piotr Tutak

IT Instytut, Społeczna Akademia Nauk, Łódź, Polska
piotrtutak@wp.pl

Abstract
This article presents an application of moldflow simulation to optimize the
injection molding process of charge air cooler plastic tank. The work shows the
advantages of this kind of simulation software and information that it can
provide. It also explains how big role today play simulation softwares and how
they can improve product and reduce development cost.

Key words: simulation, moldflow, tank, charge air cooler, injection molding

1 Introduction

Engineering constructions during everyday use are subjected to various
types of load, therefore before releasing a design for serial production at first
it must be validated to ensure that it fulfills all required functions and it does
not pose a threat to a user. This kind of validation usually involves performing
a series of physical tests reflecting the phenomena that may occur during use
in a given design. However, before building a prototype it is necessary first to
check the concept itself. This can be done by experimental research which
already require building expensive prototypes at this stage or to calculate
rightness of the concept by means of theoretical methods: analytical or
numerical. Experimental analysis in which the prototype is built is time-
consuming and very expensive. This is particularly evident when various test
variants of a given design concept are tested during the experimental test.
Theoretical researches rely on the formulation of the corresponding
mathematical description and then solution of such defined task. In case of
analytical method for most cases it is difficult to get the exact solution. Such
restrictions have forced the development of various numerical methods. At
present, most of the calculations for structural engineering issues are done by
using computer algorithms based on approximate methods, implemented in
the form of programs written in different programming languages. Today

#’ deliberately not chReg-ed

#’ @export

chNonBlank <- chNot(chBlank)

#’ \code{lubridate::is.Date} ch(eck)

#’ @export

chDates <- chP(lubridate::is.Date)

#’ \code{chScalar} & \code{chDates} ch(eck)

#’ @export

chDate <- chAnd(chScalar, chDates)

chReg(chDate)

88
10.1515/jacsm-2017-0005

80

Application of Moldflow Simulation ...

thanks to the easy algorithmization of approximation methods and the
development of computer capabilities in recent years it is possible to perform
computer simulations and obtain unattainable results of calculations for a
given design concept and then optimize it from virtual validation level
without the need of building expensive prototypes.

In the case of a charge air cooler (Figure 1) there are two types of
computer simulations which are performed to validate the mechanical strength
of this heat exchanger and also its tanks.

Figure 1. Charge Air cooler [own work]

One of them is a pressure cycle test simulation (Figure 2) checking
resistance of its aluminum core and plastic tanks for sinusoidal changing hot
air pressure in system. The pressure cycle test consists of applying cyclically
changing air pressure provided to the inlet system of charge air cooler with
specific temperature, frequency and through defined quantity of cycles. The
test result is considered as positive if the leak level after test is in a given
specification limit.

Pressure cycle test specification Pressure cycle test FEA stress

result
Figure 2. Pressure cycle test [own work]

In this article we will focus on a second simulation, called moldflow which
validates the design of the charge air cooler’s tank from the injection mold
level. Not only is the moldflow used to support and optimize the work of

81

Tutak P.

plastics parts designers but also injection mold designers and injection
molding technologists.

2 Moldflow simulation

Moldflow gives the opportunity of quick assessment of a just designed
product at the stage of digital designing, which allows to eliminate all errors at
this level. Thanks to moldflow simulation injection molding process has
achieved impossible so far level of engineering. Virtual injection trials can be
done without the need of building physical models. Figure 3 presents
a typical injection molding machine.

Figure 3. Injection molding machine [Wikipedia]

Table 1 shows an exemplary set of questions for which a group of
engineers need to find answers to produce an optimized product. The
moldflow simulation allows to find answers for these questions without the
additional cost of building or modifying a prototype.

Table 1. Modlflow simulation feedback [own work]

82

Application of Moldflow Simulation ...

Below there is a moldflow simulation of injection molding process
executed to validate charge air cooler’s inlet tank mold.

Figure 4 presents an object of simulation, the 3D model of charge air
cooler’s inlet tank, marked in green. The red rod is the injection nozzle
through which material under pressure is provided to the mold. The performed
simulation provides information on the influence of the assumed injection
point position on the key parameters of the process.

Figure 4. Inlet tank model (green) with injection nozzle (red) [own work]

Figure 5 shows the temperature of the material stream face during mold
filling. Based on this result we can see that the mold filling process is correct
because the material temperature is almost the same in the entire area.

Figure 5. Temperature of material stream face [own work]

83

Tutak P.

Figure 6 shows temperature distribution in the tank after material injection.
Based on this we can see that temperature of the mold is heterogeneous what
can result in uneven shrinkage of the material what in turn may cause
significant deformation of such injected tank.

 Figure 6. Temperature of tank after injection [own work]

To compensate the effect of uneven temperature distribution of mold, a
cooling system needs to be implemented. In case of polyamide tanks the
operating medium in cooling system is water. Mold temperature can be
controlled by diameters of the cooling channels, their location in the mold as
well as water pressure and its temperature, which for products made of
polyamide should be approximately 80°C. Designed and analyzed cooling
system is shown in Figure 7. It meets all requirements for cavity temperature
(moving part of the mold on the clamp side) as well as the core temperature
(stationary part of the mold on the injection side).

 Figure 7. Designed cooling system [own work]

84

Application of Moldflow Simulation ...

Moldflow analysis allows to specify the duration time of the injection
process. The filling time for the analyzed tank is 2.047 seconds
(Figure 8), where about 98% of the material is applied to the mold.
Simulation also provides information on how the material flows and where it
flows at the end, in this case it is the pipe and the tank foot area.

Figure 8. Mold filling phase [own work]

Based on the simulation result the required pressure value at the injection
point has been defined as 30.1 MPa (Figure 8) and the duration of the phase
15.5 seconds during which 2% of the missing material is pressed. In addition,
the program provides also the value of clamp force 88 tons (Figure 9) which
ensures that the mold does not open during the material injection.

Figure 8. Required pressure in the
injection point [own work]

Figure 9. Required clamping force
[own work]

85

Tutak P.

The moldflow analysis also shows the orientation of glass fibers in the

tank (Figure 10). Glass fibers in terms of strength for tank play a similar role
like steel reinforcement in concrete used in construction constructions.
Depending on the orientation of these fibers, there is a different shrinkage of
material that affects the final shape of the product and its dimensions. When
the fibers are stacked in parallel, the shrinkage in this area is about 0.5% but
when fibers are perpendicular to each other, the shrinkage is about 1-1.5% to
the initial length. The orientation of glass fibers is defined by the direction of
the material flow during injection. If the analysis shows an aggregation of
fibers in a given area (Figure 11) then such a place is characterized by worse
strength properties and a tank’s crack can occur in this place.

Figure 10. Orientation of glass fibers in
tank [own work]

Figure 11. Aggregation of glass fibers
 [own work]

Another issue with negative impact on the mechanical strength of the

injected parts is the fact of arising during the injection process weld lines.
They are formed as a result of merging the faces of the two material streams
coming from different directions having different temperature (Figures 12-
13). If the injection process is well set the weld lines are not visible.

86

Application of Moldflow Simulation ...

Figure 12. Weld line formation
 [www.mapeng.net]

Figure 13. Weld lines [own work]

Moldflow tool for cavity filling process indicates where the potential
locations of the weld lines could occur and how large they could be
(Figure 14-15).

Figure 14. Weld lines location [own
work]

Figure 15. Weld lines location [own
work]

This tool allows to verify if weld lines are located in the area where potential
crack might occur. From the material durability point of view this kind of
weld lines cause local weakness in the place of their occurrence. Based on
weld lines location and pressure cycle simulation result decision is taken if a
weld line in a given position is acceptable or not. If pressure cycle test
simulation shows that in the area where the weld line is located there is also
concentration of stress, the risk of crack in this area is very high. Moldflow
provides also information about the deformations that may occur in the tank
after injection. Figure 15 shows the final deformation of the analyzed tank in
all directions.

87

Tutak P.

Figure 15. Tank deformation [own work]

The program also calculates the duration of each phase which is necessary
to estimate the total cycle time.

3 Conclusion

This article presents an application of computer simulation optimizing the
injection molding process based on the example of charge air cooler plastic
tank. The presented moldflow analysis of the tank shows how important role
simulation programs play today. So far, it was impossible to obtain the results
of calculations for a given design concept. Now, by means of moldflow
program optimization can be done from virtual validation level without the
need of building expensive prototypes. It allows to create the most optimal
products with minimal effort, improve quality, reduce development cost and
control one of the most difficult technological processes, the injection
molding process.

References

1. Aliabadi M., Brebbia C.A., Computational methods in contact mechanics, CMP
and Elsevier Applied Science, London, 1992

2. Basmadjin D., The Art of Modeling in Science and Engineering,
Chapman&Hall-CRC, 1999.

3. Champion E.R., Finite Element Analysis in Manufacturing Engineering,
McGraw-Hill, New York, 1992.

4. Crandall S.H., Engineering Analysis, McGraw-Hill, New York, 1956
5. Huebner K.H., The Finite Element Method for Engineers, Wiley, New York,

1975.

88

Application of Moldflow Simulation ...

6. Jenkins W.M., Matrix and Digital Computer Methods Structural Analysis,
McGraw-Hill, New York, 1969.

7. Taler J.,Teoria i praktyka identyfikacji procesów przepływu ciepła, Ossolineum,
Warszawa-Kraków-Wrocław, 1995.

8. Yang T. Y., Finite element structural analysis, Prentice Hall, New York, 1986.
9. www.autodesk.com, access 27.09.2017
10. www.robobat.pl, access 28.08.2017
11. www.pccpolska.pl, access 11.08.2017
12. www.ascented.com, access 27.08.2017
13. www.mat.net.pl, access 22.08.2017
14. www.moldmakingtechnology.com, access 22.09.2017
15. www.plasticstoday.com, access 22.08.2017

