


 

 
 

Volume 8     Number 2     2016

 

 
 



 

 
 

Volume 8     Number 2     2016

 

 
 



 

 

 
INTERNATIONAL JOURNAL OF APPLIED COMPUTER SCIENCE METHODS (JACSM)  
is a semi-annual periodical published by the University of Social Sciences (SAN) 
in Lodz, Poland. 
 
PUBLISHING AND EDITORIAL OFFICE: 
University of Social Sciences (SAN) 
Information Technology Institute (ITI) 
Sienkiewicza 9 
90-113 Lodz 
Tel.: +48 42 6646654 
Fax.: +48 42 6366251 
E-mail: acsm@spoleczna.pl 
URL: https://www.degruyter.com/view/j/jacsm 
 
Print: Mazowieckie Centrum Poligrafii, ul. Słoneczna 3C, 05-270 Marki, www.c-p.com.pl, biuro@c-p.com.pl 
 
Copyright © 2016 University of Social Sciences, Lodz, Poland. All rights reserved. 
 

AIMS AND SCOPE: 
The International Journal of Applied Computer Science Methods is a semi-annual, refereed 
periodical, publishes articles describing recent contributions in theory, practice and applications 
of computer science. The broad scope of the journal includes, but is not limited to, the follow-
ing subject areas: 
Knowledge Engineering and Information Management: Knowledge Processing, Knowledge 
Representation, Data Mining, Machine Learning, Knowledge-based Systems, Knowledge Elici-
tation, Knowledge Acquisition, E-learning, Web-intelligence, Collective Intelligence, Language 
Processing, Approximate Reasoning, Information Archive and Processing, Distributed Infor-
mation Systems. 
Intelligent Systems: Intelligent Database Systems, Expert Systems, Decision Support Systems, 
Intelligent Agent Systems, Artificial Neural Networks, Fuzzy Sets and Systems, Evolutionary 
Methods and Systems, Hybrid Intelligent Systems, Cognitive Systems, Intelligent Systems and 
Internet, Complex Adaptive Systems. 
Image Understanding and Processing: Computer Vision, Image Processing, Computer 
Graphics, Pattern Recognition, Virtual Reality, Multimedia Systems. 
Computer Modeling, Simulation and Soft Computing: Applied Computer Modeling and 
Simulation, Intelligent Computing and Applications, Soft Computing Methods, Intelligent Data 
Analysis, Parallel Computing, Engineering Algorithms. 
Applied Computer Methods and Computer Technology: Programming Technology, Data-
base Systems, Computer Networks Technology, Human-computer Interface, Computer Hard-
ware Engineering, Internet Technology, Biocybernetics. 
 

DISTRIBUTION: 
Apart from the standard way of distribution (in the conventional paper format), on-line dissem-
ination of the JACSM is possible for interested readers. 
 

Contents

Yanqing Wen, Jian Wang,  
Bingjia Huang and Jacek M. Zurada
Convergence Analysis of Inverse Iterative  
Neural Networks with L2  Penalty 85

Mahjoubeh Tajgardan, Habib Izadkhah, Shahriar Lotfi
Software Systems Clustering Using  
Estimation of Distribution Approach 99

Konrad Grzanek  
Low-Cost Dynamic Constraint  
Checking for the JVM 115



 

 

 
INTERNATIONAL JOURNAL OF APPLIED COMPUTER SCIENCE METHODS (JACSM)  
is a semi-annual periodical published by the University of Social Sciences (SAN) 
in Lodz, Poland. 
 
PUBLISHING AND EDITORIAL OFFICE: 
University of Social Sciences (SAN) 
Information Technology Institute (ITI) 
Sienkiewicza 9 
90-113 Lodz 
Tel.: +48 42 6646654 
Fax.: +48 42 6366251 
E-mail: acsm@spoleczna.pl 
URL: https://www.degruyter.com/view/j/jacsm 
 
Print: Mazowieckie Centrum Poligrafii, ul. Słoneczna 3C, 05-270 Marki, www.c-p.com.pl, biuro@c-p.com.pl 
 
Copyright © 2016 University of Social Sciences, Lodz, Poland. All rights reserved. 
 

AIMS AND SCOPE: 
The International Journal of Applied Computer Science Methods is a semi-annual, refereed 
periodical, publishes articles describing recent contributions in theory, practice and applications 
of computer science. The broad scope of the journal includes, but is not limited to, the follow-
ing subject areas: 
Knowledge Engineering and Information Management: Knowledge Processing, Knowledge 
Representation, Data Mining, Machine Learning, Knowledge-based Systems, Knowledge Elici-
tation, Knowledge Acquisition, E-learning, Web-intelligence, Collective Intelligence, Language 
Processing, Approximate Reasoning, Information Archive and Processing, Distributed Infor-
mation Systems. 
Intelligent Systems: Intelligent Database Systems, Expert Systems, Decision Support Systems, 
Intelligent Agent Systems, Artificial Neural Networks, Fuzzy Sets and Systems, Evolutionary 
Methods and Systems, Hybrid Intelligent Systems, Cognitive Systems, Intelligent Systems and 
Internet, Complex Adaptive Systems. 
Image Understanding and Processing: Computer Vision, Image Processing, Computer 
Graphics, Pattern Recognition, Virtual Reality, Multimedia Systems. 
Computer Modeling, Simulation and Soft Computing: Applied Computer Modeling and 
Simulation, Intelligent Computing and Applications, Soft Computing Methods, Intelligent Data 
Analysis, Parallel Computing, Engineering Algorithms. 
Applied Computer Methods and Computer Technology: Programming Technology, Data-
base Systems, Computer Networks Technology, Human-computer Interface, Computer Hard-
ware Engineering, Internet Technology, Biocybernetics. 
 

DISTRIBUTION: 
Apart from the standard way of distribution (in the conventional paper format), on-line dissem-
ination of the JACSM is possible for interested readers. 
 

Contents

Yanqing Wen, Jian Wang,  
Bingjia Huang and Jacek M. Zurada
Convergence Analysis of Inverse Iterative  
Neural Networks with L2  Penalty 85

Mahjoubeh Tajgardan, Habib Izadkhah, Shahriar Lotfi
Software Systems Clustering Using  
Estimation of Distribution Approach 99

Konrad Grzanek  
Low-Cost Dynamic Constraint  
Checking for the JVM 115



85

 

 

CONVERGENCE ANALYSIS OF INVERSE ITERATIVE NEURAL 
NETWORKS WITH L2 PENALTY 

Yanqing Wen1, Jian Wang1, Bingjia Huang1 and Jacek M. Zurada2,3 

1College of Science, China University of Petroleum, Qingdao 266580, China 
wangjiannl@upc.edu.cn; hbjia@upc.edu.cn 

2Department of Electrical and Computer Engineering, University of Louisville, 
Louisville, KY, 40292, USA) 

3Information Technology Institute, University of Social Sciences, 
Łodz 90-113, Poland 

jacek.zurada@louisville.edu 

Abstract 
The iterative inversion of neural networks has been used in solving problems of 
adaptive control due to its good performance of information processing. In this 
paper an iterative inversion neural network with L2 penalty term has been 
presented trained by using the classical gradient descent method. We mainly 
focus on the theoretical analysis of this proposed algorithm such as 
monotonicity of error function, boundedness of input sequences and weak 
(strong) convergence behavior. For bounded property of inputs, we rigorously 
proved that the feasible solutions of input are restricted in a measurable field. 
The weak convergence means that the gradient of error function with respect to 
input tends to zero as the iterations go to infinity while the strong convergence 
stands for the iterative sequence of input vectors convergence to a fixed optimal 
point. 
Keywords: neural networks; gradient descent; inverse iterative; monotonicity; 
regularization; convergence 

1 Introduction 

Artificial neural networks have been widely used in cognitive science, compu-
tational intelligence and intelligent information processing [1, 2]. Feedforward 
neural networks are some of the most popular networks whose learning modes 
and theoretical properties are studied in numerous reports [3-5]. Backpropaga-
tion (BP) algorithm is the most broadly applied technique to train the feed-
forward neural networks. For BP networks, there are one or more hidden lay-
ers, in which the adjacent layer are fully connected with weights. Gradient 
descent methods are often employed to find the optimal solutions by charging 
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weights in the descent direction of objective function. Generally speaking, 
there are three main drawbacks of this classical BP networks: slow conver-
gence, poor generalization and local optimal solution.To overcome these ob-
stacles, many training improvements for BP networks have been suggested 
such as adding penalty terms (regularization), adaptive adjustment of learning 
rate and introducing momentum terms [6-10]. Actually, it is a common strate-
gy to improve the generalization and prune more redundant weights through 
regularization method. 

Inverse problem is one of the most important mathematical problems 
which tells us about parameters that cannot be directly observed [11, 12]. It is 
the inverse of a forward problem which deals with the results and then com-
pute the input. Contrary to the feedforword neural networks which correspond 
to the forward problem, the inverse problem results in iterative inversion of 
neural networks. 

For BP algorithm, the output error is propagated backward through the 
network and the error is computed by the weights. Conversely, an iterative 
inversion algorithm has been proposed in [13], where the weights learning is 
replaced by inputs learning. In this approach, errors in the network output are 
described with the network inputs. In addition, this iterative inversion algo-
rithm trains by the gradient descent method. In order to solve the optimization 
problem of electromagnetic mechanism, a novel inverse network has been 
designed which effectively avoids the local minimum problem [14]. Similar to 
the Bonhoeffer-Van der Pol (BVP) model, an inverse function delayed net-
work is presented by the use of anti-delay function model. It demonstrates that 
this proposed network can quickly converge to the optimal solution of combi-
natorial optimization problems. In [18], a real-time inversion of neural net-
work has been described by combining the particle swarm method. The recon-
figurable implementation of network inversion effectively reduced the compu-
tation time to near real-time levels. 

For trained neural networks, over-fitting is a common problem which leads 
to poor generalization. To overcome this problem, a typical technique is to 
employ the regularization method, that is, introduce the penalty term [12-17]. 
We note that 2L  norm of the parameters is one of the most often used penal-
ty terms. There are many researches on 2L  regularization which demonstrate 
the it can produce smooth solution and effectively control the magnitude of 
the parameters [14, 15, 16, 18]. 

As we know, the iterative inversion of neural networks has been widely 
used in real applications. However, it is necessary to pay attention to its theo-
retical analysis. In [19], an iterative inversion algorithm of neural networks 
with momentum has been designed and its convergence results are proved in 
detail. However, the boundedness of inputs can not be guaranteed which may 
lead to a very large solution. 
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In this paper, we focus on the iterative inversion algorithm of neural net-
works with L2 penalty term. The monotonicity of error function has been 
proved which shows that the objective functions of input are decreasing along 
with the iterations. More importantly, the boundedness of the inputs are rigor-
ously proved through introducing the L2 penalty term. Furthermore, both the 
week and strong convergence results are obtained, that is, the gradient of error 
function with respect to input vector approaches zero and the iterative input 
sequence converges to a fixed optimal point as the iterations go to infinity. 

The rest of the paper is organized as follows: in Section 2, the iterative 
version algorithm with L2 penalty is presented. In Section 3, the proofs of the 
theoretical results are demonstrated in detail. Finally, we conclude the paper 
with some useful remarks in Section 4. 

2 Inverse iterative algorithms with L2 penalty  

Let us begin with an introduction of an inverse iterative algorithms for neural 
network with three layers. The numbers of neurons for the input, hidden and 
output layers are n,p  and 1, respectively, suppose that the input sample and 
the corresponding ideal output sample are px R and OR . 

Let  ij n p
v


V be the weight matrix connecting the input and the hidden 

layers, and write  1, ,  
T p

i i ipv v v R 1, 2, ,i n  . The weight vector 
connecting the hidden and the output layers is denoted by 

1 2( , , , )T n
nw w w w R . Let :g R R be given activation functions for 

the hidden and output layers. For convenience, we introduce the following 
vector valued function 

    1 2( ), ( ), , ( ) T
nG g u g u g uu   (1) 

For any given input pRx , the output of the hidden neurons is )(VxG , 
and the final actual output is 

  ( )y g G w Vx  (2) 

The error function with 2L  regularization penalty term is 

 
     2 2

2

1
2

E O g G    x w Vx x
 

(3)
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where 
1

22

2
 

p

j
j

x


x . 

The purpose of inverse iterative algorithms is for the given output   OR , 
input x  makes error function   E x  to achieve its minimal value. To sim-
plify the writing, we do the following transformation 

  
   21 ( ) ,

2
g t O g t t R  

 
(4) 

The gradient of the error function with respect to x  is given by 

  
        2

2
1

n

i i i
i

E g G w g 


     x x w Vx v x v x
 

(5) 

where    2
1 22

2 ,2 , , 2
T

px x x  x . 

Given an initial input vector 0  pRx , inverse iterative algorithms with 

2L  penalty updates the inputs iteratively by the formula 

  1k k kE   xx x x
 (6) 

       2

2
1

 [ ].
n

k k
i i i

i
g G w g 



     x w Vx v x v x   

where 0   is the learning rate. 
 For convenience, we introduce the following notations: 

  1k k k kE     xx x x x
 (7) 

 ( x )vk kG G  (8) 

 
1k k kG G    (9) 

3 Main results and proofs 

For any px R , we write 2

1
 ( )

p

j
j

x x


 ‖‖ , where ‖‖ stands for the Eu-

clidean norm in pR . Let 0 { : ( ) 0}E   xx x  be the stationary point 
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set of the error function ( )E x , where   p  R  is a bounded open set. Let 

0, s  R  be the projection of 0 onto the s th coordinate axis, that 

   0, 1 0: ( , , , , )T
s s s px R x x x    x  

 (10) 

for 1, 2, ,s p  . To analyze the convergence of the algorithm, we need the 
following assumptions: 

)1(A  The activation and function g  continuously differentiable,  'g t  
is uniformly bounded and Lipschitz continuous on R ; 

)2(A  The weight sequence 
0

,k k

k




w V  is uniformly bounded; 

)3(A  The initial input vector of inverse iterative algorithms with 2L  pen-

alty 0x is uniformly bounded; 
)4(A  0,s does not contain any interior point for every 1, 2, ,s p  . 

We first present two useful lemmas for the convergence analysis. 

Lemma 1. Let )(xq be a function defined on a bounded closed interval 

],[ ba  such that  'q x  is Lipschitz continuous with Lipschitz constant 

0K . Then,  'q x  is differentiable almost everywhere in ],[ ba  and 

  ( ) ,q x K   . .[ , ]a e a b  (11) 

Moreover, there exists a constant 0C   such that 

  
2

0 0 0 0 0( ) ( ) ( )( ) ( ) , , [ , ].q x q x q x x x C x x x x a b       (12) 

Proof. Since  'q x is Lipschitz continuous on ],[ ba ,  'q x is absolutely 

continuous and the derivative  ''q x  exists almost everywhere on ],[ ba . 

Hence let x is a derivative point of  'q x  on ],[ ba , 

  

0

0

( ) ( )( ) lim

( ) ( )lim

h

h

q x h q xq x
h

q x h q x K
h





   

  
 

 

(13)

 

  ( ) ,q x K   . .[ , ]a e a b  (14) 
Using the integral Taylor expansion, we deduce that 
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The proof of the monotonicity theorem is completed. 
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of inverse iterative algorithms with 2L  penalty is uniformly bounded. 
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(0,1)  , let 1 1 1(1 )x x x      . By Lemma 2, there exists a subse-

quence  1
1 1{ }ik kx x  such that 1

1 1 1, ( )ik x ix   , here fki1g is a subse-

quence of fkg. Due to the boundedness of  1ikx , there is a convergent sub-

sequence    2 1i ik k , we define 2
2 2( )ik i x x . Repeating this pro-

cedure, we end up with decreasing subsequences 
, ( ), 1,2, ,itk

 t tx x i t p    . Write 1 2{ , , , }px x x x     . Then, we see 

that 'x is an accumulation point of  { }kx for any (0,1)  . But this means 

that 0 has interior points, which contradicts with the assumption  4A . Thus, 
*x must be a unique accumulation point of kx . This completes the proof of 

the strong convergence. 

4 Conclusions 

An inverse iterative algorithm for neural networks with L2 penalty has been 
proposed in this paper. The main contributions of this paper are focused on 
the theoretical analyses. The monotonicity of the error function and bounded-
ness of inputs have been proved under mild conditions. The gradient sequence 
of the error function with respect to the inputs tends to zero as the iterations 
go to infinity, this results in the weak convergence. The strong convergence 
(the input sequence approaches a fixed point) is then obtained by an additional 
assumption. 
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Abstract 
Software clustering is usually used for program understanding. Since the 
software clustering is a NP-complete problem, a number of Genetic Algorithms 
(GAs) are proposed for solving this problem. In literature, there are two well-
known GAs for software clustering, namely, Bunch and DAGC, that use the 
genetic operators such as crossover and mutation to better search the solution 
space and generating better solutions during genetic algorithm evolutionary 
process. The major drawbacks of these operators are (1) the difficulty of 
defining operators, (2) the difficulty of determining the probability rate of these 
operators, and (3) do not guarantee to maintain building blocks. Estimation of 
Distribution (EDA) based approaches, by removing crossover and mutation 
operators and maintaining building blocks, can be used to solve the problems of 
genetic algorithms. This approach creates the probabilistic models from 
individuals to generate new population during evolutionary process, aiming to 
achieve more success in solving the problems. The aim of this paper is to recast 
EDA for software clustering problems, which can overcome the existing 
genetic operators’ limitations. For achieving this aim, we propose a new 
distribution probability function and a new EDA based algorithm for software 
clustering. To the best knowledge of the authors, EDA has not been 
investigated to solve the software clustering problem. The proposed EDA has 
been compared with two well-known genetic algorithms on twelve benchmarks. 
Experimental results show that the proposed approach provides more accurate 
results, improves the speed of convergence and provides better stability when 
compared against existing genetic algorithms such as Bunch and DAGC. 

Key words: Software System, Clustering, Genetic Algorithm, Estimation of 
Distribution Algorithm (EDA), Probability Model 

1 Introduction 

In large software systems, program comprehension is an important factor for 
its development and maintenance [1]. Clustering is presented as a key activity 
in reverse engineering to extract software architecture (structure) to improve 
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understanding of the program [2]. The aim of the software clustering methods 
is to automatically group the similar artifacts of a software system together 
into clusters and discover the software structure based on relationships be-
tween artifacts in a software system, in which the relationships between the 
artifacts of different clusters are minimized, and the relationships between the 
artifacts of the same cluster are maximized (maximum cohesion and minimum 
coupling) [4]. In general, low coupling and high cohesion are characteristics 
for well-designed software systems [3].  The first stage in the software clus-
tering is to extract a Call Dependency Graph (CDG) from the program to im-
prove the comprehensibility of complex software systems [4]. CDG is usually 
used in search-based clustering algorithms for modeling the calls between 
artifacts. Figure 1 shows a sample of the clustered call dependency graph of a 
program. In this sample the relationship between artifacts in clusters is high 
and the coupling between clusters is low (well-designed). 

 
Figure 1. Clustered call dependency graph 

Considering huge search space, the problem of finding the best clustering 
for a software system is a non-deterministic polynomial complete (NP-
Complete) problem, hence, the necessity of the use of evolutionary algorithms 
to achieve a proper clustering is known [4]. Some genetic algorithms are pro-
vided in the context of software clustering in which communication and in-
formation exchange between individuals is done through the selection and 
recombination of the individual in a generation. This information movement 
causes partial solutions to combine with each other, and then higher quality 
solutions are obtained possibly. With all positive features that the standard 
genetic algorithm has, the major drawback of this algorithm is that the behav-
ior of genetic algorithm depends on parameters like how to define the crosso-
ver and mutation operators and their probabilities, etc. [5]. Therefore, re-
searcher requires experiments in order to choose the suitable values for these 
parameters [5]. Crossover is a process of taking the pairs of selected parents 
and producing new offspring from them. The aim of mutation operator is to 
avoid ‘getting stuck’ at local optimum points, maintain genetic diversity and 
discover new areas of the search space. These operators are executed serially. 
Crossover and mutation operators have a fixed rate of happening (i.e., the 
operators are applied with a fixed probability) that varies across problems. In 
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problems that require certain crossover and mutation operators, defining these 
operators is very difficult and complex, because genetic operators must be 
defined in a way that can produce valid individuals. For example, in a permu-
tation-based encoding, we need operators that can be maintained as well as 
the permutation property of individuals [6]. Moreover, in some problems in 
which the genetic operators do not guarantee the building blocks protection, 
GA shows a poor performance [5]. 

In order to overcome the disadvantages of the genetic algorithm, a class of 
evolutionary algorithms called estimation of distribution algorithms (EDAs) is 
provided that has advantages in comparison with genetic algorithm. These 
advantages include [5]: (1) generating new individuals using the probability 
distribution of all virtualization solutions of previous generation, instead of 
using the genetic operators; (2) maintaining building blocks in successive 
generations by giving more chances to partial solutions; and (3) improving the 
speed of progress towards optimal solution by maintaining building blocks. 

In this paper, we recast the estimation of distribution algorithm for soft-
ware systems clustering, aiming to overcome the genetic algorithm problems 
and achieving the better clustering by keeping the building blocks during evo-
lutionary process. We propose a probability distribution function to generate a 
new population using the features of clustering problem, which can solve the 
problem using genetic operators such as crossover and mutation. The results 
of our experiments showed that our estimation of distribution algorithm can 
provide acceptable clustering from the perspective of a domain expert, and as 
a result contribute to the understanding of software system. 

The structure of the rest of this paper is as follows: Section 2 provides 
some background about EDA and addresses the limitations of the existing 
works. Section 3 explains the proposed algorithm for software clustering us-
ing EDA. Section 4 gives the results of applying our clustering algorithm and 
some known evolutionary algorithms and discusses on results. Finally, Sec-
tion 5 concludes the paper. 

2 Background and Related Works 

In this section, we provide the basic information required for software systems 
clustering using the estimation of distribution algorithms and some related 
works in the field of software systems clustering.  

2.1 Estimation of distribution algorithms 

EDAs are population-based search algorithms based on probabilistic modeling 
of promising solutions [5]. In EDAs the new population is generated using a 
probability distribution estimated from the selected individuals of the previous 
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understanding of the program [2]. The aim of the software clustering methods 
is to automatically group the similar artifacts of a software system together 
into clusters and discover the software structure based on relationships be-
tween artifacts in a software system, in which the relationships between the 
artifacts of different clusters are minimized, and the relationships between the 
artifacts of the same cluster are maximized (maximum cohesion and minimum 
coupling) [4]. In general, low coupling and high cohesion are characteristics 
for well-designed software systems [3].  The first stage in the software clus-
tering is to extract a Call Dependency Graph (CDG) from the program to im-
prove the comprehensibility of complex software systems [4]. CDG is usually 
used in search-based clustering algorithms for modeling the calls between 
artifacts. Figure 1 shows a sample of the clustered call dependency graph of a 
program. In this sample the relationship between artifacts in clusters is high 
and the coupling between clusters is low (well-designed). 

 
Figure 1. Clustered call dependency graph 

Considering huge search space, the problem of finding the best clustering 
for a software system is a non-deterministic polynomial complete (NP-
Complete) problem, hence, the necessity of the use of evolutionary algorithms 
to achieve a proper clustering is known [4]. Some genetic algorithms are pro-
vided in the context of software clustering in which communication and in-
formation exchange between individuals is done through the selection and 
recombination of the individual in a generation. This information movement 
causes partial solutions to combine with each other, and then higher quality 
solutions are obtained possibly. With all positive features that the standard 
genetic algorithm has, the major drawback of this algorithm is that the behav-
ior of genetic algorithm depends on parameters like how to define the crosso-
ver and mutation operators and their probabilities, etc. [5]. Therefore, re-
searcher requires experiments in order to choose the suitable values for these 
parameters [5]. Crossover is a process of taking the pairs of selected parents 
and producing new offspring from them. The aim of mutation operator is to 
avoid ‘getting stuck’ at local optimum points, maintain genetic diversity and 
discover new areas of the search space. These operators are executed serially. 
Crossover and mutation operators have a fixed rate of happening (i.e., the 
operators are applied with a fixed probability) that varies across problems. In 
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problems that require certain crossover and mutation operators, defining these 
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provide acceptable clustering from the perspective of a domain expert, and as 
a result contribute to the understanding of software system. 

The structure of the rest of this paper is as follows: Section 2 provides 
some background about EDA and addresses the limitations of the existing 
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clustering using the estimation of distribution algorithms and some related 
works in the field of software systems clustering.  

2.1 Estimation of distribution algorithms 
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of promising solutions [5]. In EDAs the new population is generated using a 
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generation [5]. Figure 2 illustrates the EDA approaches in the optimization 
process. The EDA follow the following steps in the optimization process: 

1. Firstly, the initial individuals of size µ as initial population are generated. 
The generation of these µ individuals is usually carried out by assuming 
a uniform distribution on each variable. Then, each individual using fit-
ness function is evaluated. 

2. Secondly, λ individuals (where λ ≤ µ) based on specified criteria are se-
lected for calculating the n–dimensional probabilistic model that better 
represents the interdependencies. The aim is to calculate joint probability 
distribution of selected individuals. This step is also known as the learn-
ing procedure, and it is the most crucial one, since representing appropri-
ately the dependencies between the variables is essential for a proper 
evolution towards fitter individuals. 

3. New population is generated according to calculated probability distribu-
tion. 

4. Finally, new population is replaced into previous population. 

Steps 2, 3 and 4 are repeated until a stopping condition is verified. Exam-
ples of stopping conditions are: achieving a fixed number of populations or a 
fixed number of different evaluated individuals, uniformity in the generated 
population, and the fact of not obtaining an individual with a better fitness 
value after a certain number of generations. 

2.2 Software clustering algorithms 

Generally, in literature, software clustering algorithms can be generally cate-
gorized into the following groups:  

1. Clustering algorithms based on concept analysis [7]:  In such algorithms, 
the goal is to classify procedures and variables into clusters. Clustering 
algorithms of this group are merely used for extracting software architec-
ture form the respective procedural codes and are not conclusive for large 
systems, as quoted by the author [7].  

2. Hierarchical clustering algorithms [8-11]: In these algorithms, each entity 
is initially considered in a separate cluster, and then; these clusters are 
gradually combined with each other creating larger clusters. These algo-
rithms provide hierarchical structure from system architecture [8]. The 
pitfall of hierarchical methods is their failure to benefit from software 
engineering criteria for determining clusters or code clusters. The hierar-
chical approaches seem to be useful for program understanding and 
knowledge discovery, because in general they allow the original problem 
to be studied at different levels of detail by navigating up and down the 
hierarchy. However, it is a difficult problem to find the appropriate 
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height at which to prune a hierarchy of clusters to obtain optimal parti-
tioning. 

 
Figure 2. Illustration of EDA approaches in the optimization process 

3. Search-based clustering algorithms: clustering problem is treated as a 
search task in these algorithms. Since searching the complete state space 
turns the situation into a NP-Complete problem [11], heuristic search 
techniques such as genetic algorithm are deployed for finding the optimal 
or near optimal answer during a reasonable time. Search operation is car-
ried out using criteria of maximal cohesion and minimal coupling of 
clusters. These criteria are particularly suitable in object-based systems 
for identifying sub-systems or clusters. These methods are divided into 
two categories: global search (Such as Bunch [12, 13] and DAGC [6]), 
local search (Such as SAHC [13] and NAHC [13]) and combining local 
and global search (Such as HC+Bunch [14]) methods. The main draw-
back of local search methods is that they have the risk of getting stuck in 
local maximum values, but, global search methods are able to escape 
from these local maximums [12]. Search-based algorithms have been 
able to achieve better results than the hierarchical techniques. 

Genetic algorithms are widely and effectively used for NP-Hard optimiza-
tion problems. They can produce acceptably near-optimal answers in reasona-
ble time [6]. Genetic clustering algorithms are very subjective [15]; well-
known tools such as DAGC, Bunch use genetic algorithm for clustering soft-
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ware systems. In the Bunch [8], each individual is an array that the number of 
its genes is equal to the number of nodes in the call dependency graph (CDG) 
and the content of each gene identifies a cluster that contains the correspond-
ing node. In the DAGC [6], each array (individuals) is a permutation of the 
nodes of N integer. An individual can be decoded into a clustering by the 
following process: mth cell of the individual represents the node number ‘m’ 
of the CDG. Its content includes number of another node of graph like ‘p’ 
(1≤p≤N) and if ‘p’ is equal or greater than ‘m’, then ‘m’ is placed in a new 
cluster otherwise ‘m’ belongs to the same cluster as ‘p’.  

Objective function used in Bunch and DAGC and our algorithm is Tur-
boMQ [11, 12]. If the internal edges of cluster and edges between two clusters 
are respectively represented by i  and ji, , TurboMQ value will be then 
computed as follows:  
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3 The proposed algorithm 

Search-based software clustering methods such as the Bunch and DAGC are 
clearly superior to the hierarchical methods. However, they have a particular 
drawback that it was explained before. We try to address it by introducing a 
new algorithm in this section. This new algorithm is based on probabilistic 
model and does not use genetic operators such as crossover and mutation, 
instead keep the building blocks. In other words, we present a probabilistic 
model to generate a new population. This section explains our proposed prob-
abilistic model (subsection 3.1) and software clustering using EDA (subsec-
tion 3.2). 

3.1 Probabilistic model 

To obtain the probability model, let M be an n×n square matrix (where n is 
the number of software artifacts), and initially the values of all elements ex-
cept the main diagonal are 1/n. The value of M[i, j] represents the probability 
that two artifacts will be placed in the same cluster on individuals in the next 
generation. For example, if we have software system containing 5 artifacts, 
initially, the probability will be as shown in Table (1). 
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Table 1. The initial probability matrix 

 
 
 
 
 
 
 
 
 
  M�i, j� � �
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Then, we find the best and worst individuals of the population in each gen-

eration and change the values of probability matrix as follows: 

1. If two artifacts i and j are placed in the same cluster in the best individual 
but are not placed in the same cluster in the worst individual (suppose t is 
the number of iterations for the evolutionary algorithm): 

 if	M�i, j� � � � �
� 														M�i, j� � M�i, j� � �

�	 (4) 

2. If two artifacts i and j are placed in the same cluster in the worst individ-
ual but are not placed in the same cluster in the best individual: 

 if	M�i, j� � �
� 														M�i, j� � M�i, j� � �

�		 (5) 

3. If two artifacts i and j are placed in the same cluster in the best and the 
worst individuals, the value of probability in the probability matrix does 
not change. 

After changing the probability model, the new population is produced us-
ing the new possibilities. For example, Suppose in the Table (2), (a) and (b) 
are the best and the worst individuals respectively, then new probabilities 
assuming t=100 are given in Table (3). 

It is obvious that in this model the probability of any two artifacts is not 
equal to 0 and 1. We consider this condition for maintaining the diversity of 
our population and preventing premature convergence.  

Table 2. The best and worst individual 

 
 
 
 
 

F5 F4 F3 F2 F1  
0.2 0.2 0.2 0.2 0 F1 
0.2 0.2 0.2 0 0.2 F2 
0.2 0.2 0 0.2 0.2 F3 
0.2 0 0.2 0.2 0.2 F4 
0 0.2 0.2 0.2 0.2 F5 

F5 F4 F3 F2 F1  
2 1 1 3 3 (a) 
3 2 2 1 3 (b) 
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Table 3. The new probability matrix   
 
 
 
 
 
 
 
 
 
 

3.2 Clustering using EDA 

In our proposed algorithm each solution is shown as an individual. To rep-
resent individuals, we use Bunch algorithm’s chromosome representation [11, 
12], but with limited number of clusters.  In the Bunch, each individual is an 
array that the number of its genes is equal to the number of nodes in the call 
dependency graph (CDG) and the content of each gene identifies a cluster that 
contains the corresponding node and its numeric value is between one to N 
that N is the number of nodes in the CDG. Formally, an encoding on a string 
S is defined as: 
  S = s1 s2 s3 s4 … sN (6) 

Where, N is the number of nodes in the CDG and si identifiers the cluster 
that contains the ith node of the graph. For example, the graph in Figure 3 is 
encoded as the following string S: 
  S = 2 2 3 3 1 1 1  

 
Figure 3. A sample clustering 

In contrast with existing genetic based algorithm for software clustering, in 
our method, we use the probability model instead of the using crossover and 
mutation. In the proposed algorithm, first an initial population of individuals 
is generated randomly and the individuals are evaluated using TurboMQ fit-

F5  F4  F3  F2  F1    
0.2  0.2  0.2  0.25 0  F1 
0.2  0.2  0.2  0  0.25 F2  
0.2  0.2  0  0.2  0.2  F3  
0.2  0  0.2  0.2  0.2  F4  
0  0.2  0.2  0.2  0.2  F5  
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ness function. Then until the termination condition is established, individuals 
are selected using the selection operator and then offspring is generated ac-
cording to calculated probability distribution. The previous population is re-
placed by the new population. Figure 4 shows two first generation of our pro-
posed algorithm. In this figure initial population indicate the number of indi-
viduals and the corresponding fitness.  

 
Figure 4. Two first generation of our proposed algorithm 

We use the top of triangle probability matrix for the generation of each in-
dividual in new population as Algorithm 1. In any iteration, the old population 
is replaced by new produced population. Briefly, the EDAs process is as Al-
gorithm 2. 

 

Algorithm 1: New population generation algorithm 

‐ Until for each artifact, the cluster is not determined, the following steps are repeated: 
1. Select a row from the probability matrix, randomly. 
2. For each two artifacts generate a random number from [0, 1]. If the value of 

the random number is smaller or equal to their probability value, two arti-
facts are placed in the same cluster. 

 

Algorithm 2: EDA based software clustering algorithm 

BEGIN 
     Generate initial population of size µ, randomly. 
     Evaluate each individual using TurboMQ (Eq. 2) 
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     While (a fixed number of generation is not achieved) 
1. Select λ=2 promising and worse individuals (where λ ≤ µ); 
2. Calculate the probability distribution matrix using selected individu-

als (Section 3.1); 
3. Generate new population according to calculated probability distri-

bution; 
4. Evaluate each new offspring using TurboMQ; 
5. Replace offspring into main population; 

 END

4 Experimental Results 

In this section, we compare the results obtained by proposed EDA and five 
well-known algorithms such as Bunch, DAGC, NAHC (Next Ascent Hill 
Climbing), SAHC (Steepest Ascent Hill Climbing), HC+Bunch. For evaluat-
ing the obtained clustering, internal and external metrics are used. External 
one is used to compare results of obtained clustering algorithm by the cluster-
ing provided by a domain expert. In fact, the external metrics are used for 
assessing the reliability of an algorithm. Mojo [16], edgeMojo [17], Preci-
sion/Recall [11], and Fm as harmonic mean of Precision/Recall are of external 
metrics. Mtunis is an academic operating system and since the clustering of 
this operating system is available so we've used it to evaluate the reliability of 
proposed algorithm. When the clustering produced by the expert is not availa-
ble, internal metrics can be used. Table 4 shows the comparison of the pro-
posed algorithm with some existing clustering algorithms. What is clear in 
this table is that proposed algorithm is able to provide clustering similar to 
clustering of an expert (When amount of Mojo, edgeMojo is lower, it repre-
sents more similarity between clustering produced algorithm with the one 
produced by an expert, while the larger Fm indicates more similarity). 

In Table 5, the proposed algorithm is compared with known evolutionary 
algorithms on twelve benchmarks in terms of TurboMQ and the average value 
in twenty runs. In all these cases, it's obvious that the proposed algorithm was 
able to separate the clusters equal or better than Bunch and DAGC. The re-
sults of the EDA are equal to Bunch in seven and two cases and better than 
Bunch in five and nine cases in terms of TurboMQ and average, respectively. 
These results are also equal to DAGC in two cases, better than DAGC in ten 
cases in terms of TurboMQ and better than DAGC in terms of average in all 
cases. 
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Table 4. Comparisons of proposed algorithm with two well-known GA 

 
 
 
 
 
 
 
 
 
 

Table 5. Comparisons of proposed algorithm with two well-known GA 

  BUNCH   DAGC   EDA  

Software 
systems 

# of 
clus-
ters 

Tur-
boMQ 

Aver-
age 

# of 
clus-
ters 

Tur-
boMQ 

Aver-
age 

# of 
clus-
ters 

Tur-
boMQ 

Aver-
age 

compiler 4 1.506 1.506 4 1.506 1.455 4 1.506 1.506 
boxer 7 3.101 3.101 7 3.101 2.910 7 3.101 3.091 
mtunis 5 2.314 2.286 6 2.241 2.048 5 2.314 2.314 
ispell 7 2.177 2.140 8 1.997 1.872 6 2. 190 2.180 
bison 13 2.606 2.539 15 1.763 1.679 12 2.664 2.633 

cia 14 2.706 2.627 19 1.833 1.691 12 2.787 2.740 
ciald 8 2.851 2.834 12 2.463 2.275 8 2.851 2.849 

moduliz-
er 

7 2.648 2.608 9 2.112 1.915 7 2.648 2.628 

nos 5 1.636 1.625 5 1.606 1.508 5 1.636 1.635 
rcs 9 2.175 2.115 11 1.894 1.766 8 2.194 2.161 

spdb 6 5.741 5.741 8 5.314 5.076 6 5.741 5.741 
star 10 3.809 3.673 16 2.831 2.524 9 3. 832 3.766 

 
In Table 6, the speed of convergence in proposed algorithm and Bunch is 

compared. We run the algorithms ten times and considered 1000 for number 
of iterations in each run. In cases that the obtained TurboMQ by our algorithm 
is equal to Bunch, the advantage of our method is that the speed of conver-
gence to the solution is more and algorithm finds the solution in lower reps; 
for illustration Figure 5 and Figure 6 show convergence diagram of compiler 
benchmark for Bunch and EOD respectively. Obviously, EOD is converged in 
lower number of iterations. 

Table 6. Comparisons of proposed algorithm with Bunch in terms of the average of iterations 
for the convergence to the solution 

 compiler spdb boxer mtunis ciald modulizer nos 
BUNCH 258 325 270 396 577 505 345 

EOD 70 98 114 141 314 329 113 
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0.48 10.33 7 DAGC 
0.25 11.14 9 HC+Bunch 
0.53 13.14 5 NAHC 
0.55 10.81 5 SAHC 
0.57 7.47 5 EDA 
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Figure 5. Convergence diagram (compiler) for EDA  

 

Figure 6. Convergence diagram (compiler) for Bunch 

In Table 7, our algorithm is compared with Bunch and DAGC in terms of 
the standard deviation of the results of 20 runs (the lower Std. Deviation indi-
cates more stability). The results of this table show that stability of proposed 
algorithm is higher than Bunch and DAGC in most and all cases, respectively. 
So, we can say our algorithm has higher stability. For example, stability dia-
gram of proposed algorithm for one of the benchmarks (compiler) is presented 
in Figure 7.  
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5 Conclusion 

In this paper, we have used estimation of distribution algorithm for software clus-
tering problem. A probability model was presented using features of clustering prob-
lem. Results of initial tests showed that the proposed algorithm is very promising. For 
future work we are planning to do the following work: 

1. In future work, we will try to test our algorithm on many software systems.  
2. One of the important issues related to Bunch encoded is largeness of search 

space due to presence of some repetitive answers, i.e., although some generated 
encodes have apparently different representations, but in reality, they represent 
the same clustering. For example, though two chromosomes S1= 2 2 4 4 1 and 
S2=1 1 5 5 3 have different appearances but they are actually representative of 
the same clustering. Because, in both, there are three clusters so that nodes of C1 
and C2 are in same cluster, nodes of C3 and C4 are in same cluster and node node 
C5, located in distinct cluster. Search space in Bunch algorithm is nn; this large 
search space decelerates speed of this algorithm to find appropriate structure. 
The state space of nn is the worst state for a problem and search in this space is 
impossible in a rational time. Such state space would cause doubt in finding a 
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good structure for software by Bunch. We believe that we can reduce it using 
limited number of clusters. It is well known fact that the number of clusters are 
much less than the number of classes in a program. Considering the number of 
classes as n, if we limit the number of clusters to maximum n/3 of classes (it is 
usually much less than n/3.); therefore, the state space of Bunch can be reduced 

to nn )
3

( . The upper bound of this state space is O(n!).  This significant reduc-

tion may have a significant effect on improvement of the quality of achieved 
structure. 
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Abstract

Using formal methods for software verification slowly becomes a standard in the

industry. Overall it is a good idea to integrate as many checks as possible with the

programming language. This is a major cause of the apparent success of strong

typing in software, either performed on the compile time or dynamically, on run-

time. Unfortunately, only some of the properties of software may be expressed in

the type system of event the most sophisticated programming languages. Many of

them must be performed dynamically. This paper presents a flexible library for the

dynamically typed, functional programming language running in the JVM environ-

ment. This library offers its users a close to zero run-time overhead and strong

mathematical background in category theory.

Keywords: Formal software verification, software quality, dynamic type-checking,

functional programming, category theory, Clojure

1 Introduction

Despite an apparent progress in programming languages theory and practice, the IT

industry still experiences problems achieving a desired level of software quality and

reliability. M. Thomas [2] mentions that there are from 4 up to 50 bugs (on average)

in every 1 thousand lines of production code. This is why the computers are still prob-

lematic to rely on in the (not only) safety and mission critical areas of life [1], and the

non-critical software is usually hard to use, has got a lowered level of security due to

hidden bugs that may even not exhibit themselves on a regular usage basis, but may be

exploited by the ones who search for vulnerabilities with an intention to steal informa-

tion or to introduce other kinds of costly confusion.

This paper is a result of some real-life, production-related experiences and following

considerations regarding when and how to perform constraints checks and other kinds
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of formal software verification in a dynamically-typed programming language for the

Java Virtual Machine (JVM) environment. We argue that it is a reasonable decision to

imply lots of these checks on the time of the program’s execution. We also provide

a library called ch that allows to define and perform some run-time constraint checks.

This article may be treated as a good introduction to how this library is implemented

and how it can (and should) be used.

1.1 Reasoning About Software Correctness

Scale of contemporary software systems together with the fact that it is intended to run

in a multi-tasking environment makes the formal verification methods a strong require-

ment not an option now. Growing popularity of tools like TLA+ (L. Lamport [5]), tem-

poral logic, and even the hand proofs in software creation process confirm the growing

need to become more and more dependent on the beauty of mathematical verification

of software systems.

It is a commonly accepted truth that type systems in programming languages are a

very strong point in the formal verification of software. Advances in type theory and

practice [3, 4] have led to development of programming languages that are particularly

effective in catching a variety of common bugs. Let us mention Haskell [9] or Ada here.

Lamport [6] says:

,,Types have become ubiquitous in computer science. [. . . ] Types do more good

than harm in a programming language: they let the compiler catch errors that would

otherwise be found only after hours of debugging.”

Strong typing means that the expressions in a language contain no implicit data

conversions (coercions) that could lead to an unintentional loss of information. Static

type system is the one in which the compiler (more generally speaking - a static veri-

fication tool, the one that reads and analyzes source code) is responsible for making a

proof (or dis-proof) that a computer program does not violate any of the type-related

invariants that are amenable to pre-run analysis. On the other side, the dynamically

typed languages are these that leave at least some of the verifications of invariants for

the run-time. We should also be aware that there are type-based invariants that may

be verified neither statically, nor dynamically. For example, it is impossible to prove

the correctness of a famous quick-sort algorithm using a type checker of any kind (for

a discussion see [22]). In such cases using a formal method like the TLA+ ahead of

the implementation phase alone to prove correctness, or even providing a hand proof

is priceless. In any other scenario relying on the type system is a good idea. Typing

the specification languages is a completely different problem - for more on that subject,

please see [6].

1.2 Discussion on Static and Dynamic Type-Checking

Using a programming language with a static type checker seems a robust method of

eliminating bugs in software. When considering only the type-related aspects of a lan-

guage this statement leads to an immediate conclusion that the dynamic type checking

should be avoided at all cost. But the language is much more that that, and there are
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please see [6].

1.2 Discussion on Static and Dynamic Type-Checking

Using a programming language with a static type checker seems a robust method of

eliminating bugs in software. When considering only the type-related aspects of a lan-

guage this statement leads to an immediate conclusion that the dynamic type checking

should be avoided at all cost. But the language is much more that that, and there are

multiple reasons why the dynamically typed programming languages have made such a

great success in the industry. Among the others, the dynamic languages:

– Allow to perform immediate tests of the functionality being implemented by using

REPL (Read-Eval-Print Loop).

– In the case of languages from the Lisp family, like Clojure [7, 8] it is even possible

to compile new functionality without stopping the running program. The REPL ex-

ecution takes part in the same environment in which the production software runs,

we have no debug-release cycle here, and that feature alone is a great productivity

booster.

– A lack of static type system allows to define programming constructs that are in-

tended to be run in contexts that would be very hard or even impossible to describe

using a set of static type-related constraints. Some Lisp macros are good example

here.

Even when we decide to rely on a static type checker we should be aware that

the extent to which we will be able to verify programs using this tool is limited to

what can be expressed in the rules of the type system, and this extent has bounds.

Other checks/verifications/proofs must be performed anyway either on the run-time or

by hand proving. Static type systems generally verify that the elements of a system fit

together as a structure, and only sometimes can prove or disprove their homeostasis and

well-functioning over a period of time.

1.3 Functional Programming

Another means of establishing high level of software quality and reliability is using

functional programming languages like Haskell, Clojure, Erlang. The impact of the

immutability of data structures on software correctness, its predictability and a relative

ease of searching for bugs may be at least as big as using the type checker to find the

mistakes statically. Out of the mentioned three languages two are dynamically typed

(Erlang, Clojure) and they are highly successful even in mission critical domains.

1.4 Existing Solutions for Clojure

Clojure programming language [7, 8] is one of the most interesting contemporary JVM-

targeted languages. It belongs to Lisp family, and - as its elders - is dynamically typed.

This section presents current approaches that exist in this language, and that are related

to the problems formulated above.

One attempt to employ some kind of static type checking is clojure/core.typed li-

brary [20]. This solution uses type annotations and a static type checker. Unfortu-

nately, the realization has severe performance problems as described in the discussion

[21]. Moreover, due to the reasons described in the paragraphs above a full static type

checker does not make a perfect fit with respect to the pragmatics of using Lisps and to

the overall idea of implementing software quickly.

Another similar library that suffers similar problems is prismatic/schema [19]. In

the case of this solution, we find it better in terms of the overall usability and perfor-

mance, but the type annotations a kind of get in the way with the normal ways of using

Lisp, that is - writing as much as possible using s-expressions.
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of formal software verification in a dynamically-typed programming language for the

Java Virtual Machine (JVM) environment. We argue that it is a reasonable decision to

imply lots of these checks on the time of the program’s execution. We also provide

a library called ch that allows to define and perform some run-time constraint checks.

This article may be treated as a good introduction to how this library is implemented

and how it can (and should) be used.

1.1 Reasoning About Software Correctness

Scale of contemporary software systems together with the fact that it is intended to run

in a multi-tasking environment makes the formal verification methods a strong require-

ment not an option now. Growing popularity of tools like TLA+ (L. Lamport [5]), tem-

poral logic, and even the hand proofs in software creation process confirm the growing

need to become more and more dependent on the beauty of mathematical verification

of software systems.

It is a commonly accepted truth that type systems in programming languages are a

very strong point in the formal verification of software. Advances in type theory and

practice [3, 4] have led to development of programming languages that are particularly

effective in catching a variety of common bugs. Let us mention Haskell [9] or Ada here.

Lamport [6] says:

,,Types have become ubiquitous in computer science. [. . . ] Types do more good

than harm in a programming language: they let the compiler catch errors that would

otherwise be found only after hours of debugging.”

Strong typing means that the expressions in a language contain no implicit data

conversions (coercions) that could lead to an unintentional loss of information. Static

type system is the one in which the compiler (more generally speaking - a static veri-

fication tool, the one that reads and analyzes source code) is responsible for making a

proof (or dis-proof) that a computer program does not violate any of the type-related

invariants that are amenable to pre-run analysis. On the other side, the dynamically

typed languages are these that leave at least some of the verifications of invariants for

the run-time. We should also be aware that there are type-based invariants that may

be verified neither statically, nor dynamically. For example, it is impossible to prove

the correctness of a famous quick-sort algorithm using a type checker of any kind (for

a discussion see [22]). In such cases using a formal method like the TLA+ ahead of

the implementation phase alone to prove correctness, or even providing a hand proof

is priceless. In any other scenario relying on the type system is a good idea. Typing

the specification languages is a completely different problem - for more on that subject,

please see [6].

1.2 Discussion on Static and Dynamic Type-Checking

Using a programming language with a static type checker seems a robust method of

eliminating bugs in software. When considering only the type-related aspects of a lan-

guage this statement leads to an immediate conclusion that the dynamic type checking

should be avoided at all cost. But the language is much more that that, and there are
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Finally, the most promising project in this domain is Cognitect’s clojure.spec [17,

18]. It may become a de-facto standard specification tool, but its goals are slightly

different than the ones we are looking at. Its development process is in its early stages,

as the adoption in the industry.

These considerations led us to the idea of creating a custom solution - Clojure library

meeting the requirements of dynamic specification/type/invariants validator, with the

following assumptions:

– being deeply rooted in functional programming [9] and using notions from the

category theory [10],

– consistency with the Lisp nature of Clojure programming language, by using s-

expressions only (Lisp as a ,,big ball of mud”),

– relying on fast dynamic type-checking routines of the JVM - the *instanceof* op-

erator,

Our solution is called kongra/ch [12, 13], shortly ch, and it has been successfully

used in kongra/prelude [14, 15] and aptell [16] projects. The following sections of the

paper are detailed description of its implementation and possible use.

2 Essentials of the ch Library

Every predicate check uses the following procedure to generate a message describing

the value, together with its type, that violates the check:

(defn chmsg

[x]

(with-out-str

(print "Illegal value ") (pr x)

(print " of type ") (pr (class x))))

When executed in the REPL the procedure works as follows:

user> (chmsg 123)

"Illegal value 123 of type java.lang.Long"

or, for nil values:

user> (chmsg nil)

"Illegal value nil of type nil"

The most essential syntactic structure in the ch library is a (ch...) form. Due to the

implementation issues the form is intended to be used both as an assertion and as a

boolean-valued function. The definition begins with a supporting function pred-call-

form:

(defn- pred-call-form

([form x]

(let [form (if (symbol? form) (vector form) form)]

(seq (conj (vec form) x))))

([form _ x]

(let [form (if (symbol? form) (vector form) form)]

(concat form (list nil x)))))
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(defn- pred-call-form

([form x]
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(seq (conj (vec form) x))))

([form _ x]

(let [form (if (symbol? form) (vector form) form)]

(concat form (list nil x)))))

and the actual ch macro that uses the function to generate a target s-expression, either

an assertion or a predicate-like call:

(defmacro ch {:style/indent 1}

([pred x]

(let [x’ (gensym "x__")

form (pred-call-form pred x’)]

‘(let [˜x’ ˜x] (assert ˜form (chmsg ˜x’)) ˜x’)))

([pred #_ be-pred _ x]

(let [form (pred-call-form pred x)]

‘(boolean ˜form))))

To see, what actually happens when a compiler encounters the (ch...) form, please take

a look at the expression (ch nil? 123). This expression evaluates the function nil?

belonging to the Clojure standard library against the argument, integral (Long) value

123. The target form is

(let [x__11622 123]

(assert (nil? x__11622) (chmsg x__11622))

x__11622)

The compiler introduces an additional local variable x 11622 that holds the value of an

evaluated 123 input value (expression from compiler’s point of view) and executes the

(assert...) on it using the passed nil? function an assert’s predicate. After a successful

evaluation the evaluated value of x 11622 is returned resulting in the desired behavior.

This time it’s failure, because 123 is not a nil value:

user> (ch nil? 123)

AssertionError Assert failed: Illegal value 123 of type

java.lang.Long

(nil? x__10994) kongra.ch/eval10995

(form-init3881948826253525319.clj:17)

If we decide to use (ch...) using its predicate “nature”, like (ch nil? :as-pred 123), we

get:

(boolean (nil? 123))

and the evaluation of the form ends with false value being returned.

Now, let’s talk about the performance. All the following performance benchmarks

were taken in the commodity hardware environment: Intel i7-5500U, 16 GB of RAM,

Ubuntu 14.04 64-bit using the awesome criterium1 library for benchmarking Clojure

codes. Additionally we have: CIDER 0.14.0 (Berlin), nREPL 0.2.12, Clojure 1.8.0,

Java 1.8.0 121. At first a simple expression:

user> (quick-bench (nil? 123))

Evaluation count : 52064214 in 6 samples of 8677369 calls.

Execution time mean : 1,113992 ns

Execution time std-deviation : 0,041270 ns

Execution time lower quantile : 1,058363 ns ( 2,5%)

1https://github.com/hugoduncan/criterium
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Execution time upper quantile : 1,160112 ns (97,5%)

Overhead used : 10,475943 ns

and the corresponding predicate form of (ch...):

user> (quick-bench (ch nil? :as-pred 123))

Evaluation count : 52235052 in 6 samples of 8705842 calls.

Execution time mean : 1,078551 ns

Execution time std-deviation : 0,115450 ns

Execution time lower quantile : 0,942867 ns ( 2,5%)

Execution time upper quantile : 1,215710 ns (97,5%)

Overhead used : 10,475943 ns

Also for the assertion:

user> (quick-bench (ch nil? nil))

Evaluation count : 52466976 in 6 samples of 8744496 calls.

Execution time mean : 1,081879 ns

Execution time std-deviation : 0,135884 ns

Execution time lower quantile : 0,977794 ns ( 2,5%)

Execution time upper quantile : 1,262656 ns (97,5%)

Overhead used : 10,475943 ns

We can clearly see that there is no apparent overhead of the call. This is only an intro-

ductory example, so it is impossible to reason now about the target performance loss

when applying this approach to a production software. This will be discussed in further

parts of the paper.

3 Generator of Ch(eck)s

The library would be far from being useful, if the user would be forced to use raw

(ch...) forms everywhere. Instead, we introduce the (defch . . . ) macro that allows the

programmer to define his own named checks. The macro code goes as follows:

(defmacro defch {:style/indent 1}

([chname form]

(let [x (gensym "x__")

form+ (append-arg form x) ]

‘(defch ˜chname [˜x] ˜form+)))

([chname args form]

(assert (vector? args))

(let [args+ (insert-noparam args)

form+ (insert-noarg form)]

‘(defmacro ˜chname {:style/indent 1}

(˜args ˜form)

(˜args+ ˜form+)))))

To do its job, the macro performs some manipulations with the arguments and the shape

of the target form, which is a subsequent macro in this case. So we may say that defch

is a macro-writing macro.
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To do its job, the macro performs some manipulations with the arguments and the shape

of the target form, which is a subsequent macro in this case. So we may say that defch
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The arguments must be enhanced do support a non-assertion (predicate) use, be-

cause - as in the case of raw ch - we tend to operate both in assertion and in predicate

mode. The arguments of the target macro are prepared using the following insert-

noparam:

(defn- insert-noparam

[params]

(vec (concat (butlast params)

(list ’_)

(when (seq params) (list (last params))))))

while the two following procedures prepare the predicate target form:

(defn- insert-noarg

[form]

(let [;; lein eastwood passes a wrapper (sequence <form>),

;; let’s strip it down:

form (if (= (first form) ‘sequence) (second form) form)

[ccseq [cconcat & cclists]] form]

(assert (= ccseq ‘seq) (str "Illegal ccseq "

ccseq " in " form))

(assert (= cconcat ‘concat) (str "Illegal cconcat "

cconcat " in " form))

(assert (>= (count cclists) 2) (str "Illegal cclists "

cclists " in " form))

(let [lsts (butlast cclists)

lst (last cclists)

noarg ‘(list ’nil)]

‘(seq (concat ˜@lsts ˜noarg ˜lst)))))
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ccseq " in " form))

(assert (= cconcat ‘concat) (str "Illegal cconcat "

cconcat " in " form))

(assert (>= (count cclists) 2) (str "Illegal cclists "

cclists " in " form))

(let [arg ‘(list ˜x)]

‘(seq (concat ˜@cclists ˜arg)))))

Finally we may take a look at how this entirety works together.

4 Unit Type Ch(eck)

Unit type is a very useful type in many programming languages. Unit type has exactly

one value. It is so called terminal object in category of types and typed functions. In
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Execution time upper quantile : 1,160112 ns (97,5%)

Overhead used : 10,475943 ns

and the corresponding predicate form of (ch...):

user> (quick-bench (ch nil? :as-pred 123))

Evaluation count : 52235052 in 6 samples of 8705842 calls.

Execution time mean : 1,078551 ns

Execution time std-deviation : 0,115450 ns

Execution time lower quantile : 0,942867 ns ( 2,5%)

Execution time upper quantile : 1,215710 ns (97,5%)

Overhead used : 10,475943 ns

Also for the assertion:

user> (quick-bench (ch nil? nil))

Evaluation count : 52466976 in 6 samples of 8744496 calls.

Execution time mean : 1,081879 ns

Execution time std-deviation : 0,135884 ns

Execution time lower quantile : 0,977794 ns ( 2,5%)

Execution time upper quantile : 1,262656 ns (97,5%)

Overhead used : 10,475943 ns

We can clearly see that there is no apparent overhead of the call. This is only an intro-

ductory example, so it is impossible to reason now about the target performance loss

when applying this approach to a production software. This will be discussed in further

parts of the paper.

3 Generator of Ch(eck)s

The library would be far from being useful, if the user would be forced to use raw

(ch...) forms everywhere. Instead, we introduce the (defch . . . ) macro that allows the

programmer to define his own named checks. The macro code goes as follows:

(defmacro defch {:style/indent 1}

([chname form]

(let [x (gensym "x__")

form+ (append-arg form x) ]

‘(defch ˜chname [˜x] ˜form+)))

([chname args form]

(assert (vector? args))

(let [args+ (insert-noparam args)

form+ (insert-noarg form)]

‘(defmacro ˜chname {:style/indent 1}

(˜args ˜form)

(˜args+ ˜form+)))))

To do its job, the macro performs some manipulations with the arguments and the shape

of the target form, which is a subsequent macro in this case. So we may say that defch

is a macro-writing macro.
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some programming languages (e.g. Haskell) the unit type is expressed as (), while in

others (like C/C++/Java) a void keyword is used to express something related, namely

the fact that the procedure does not return any value. The latter approach may be some-

what informally referred to as a means to express a lack of information at the output of

a procedure, and this follows the original nature of the unit type in category theory - a

type with only one object carries on no information.

In Clojure, as in Java, we traditionally use nil as a representation of unit type. The

check for nil-ness is defined as follows:

;; UNIT (NIL)

(defch chUnit [x] ‘(ch nil? ˜x))

This form introduces a macro named chUnit that my be used in the following two ways:

user> (chUnit 1)

AssertionError Assert failed: Illegal value 1 of type

java.lang.Long

(clojure.core/nil? x__11646) kongra.ch/eval11647

(form-init3881948826253525319.clj:83)

or

user> (chUnit :as-pred 1)

false

Additionally we introduce complementary ch(eck)s for non-nil values:

;; NON-UNIT (NOT-NIL)

(defn not-nil? {:inline (fn [x] ‘(if (nil? ˜x) false true))}

[x] (if (nil? x) false true))

(defch chSome [x] ‘(ch not-nil? ˜x))

Their cost is as abysmal as for nil? check, as presented in one of the previous sections.

With the following definitions of test procedures:

(defn foo [x] (chUnit x))

(defn goo [x] (chSome x))

we have:

user> (quick-bench (foo nil))

Evaluation count : 35042178 in 6 samples of 5840363 calls.

Execution time mean : 6,895234 ns

Execution time std-deviation : 0,280141 ns

Execution time lower quantile : 6,617001 ns ( 2,5%)

Execution time upper quantile : 7,299458 ns (97,5%)

Overhead used : 10,475943 ns

and:

user> (quick-bench (goo 123))

Evaluation count : 34250304 in 6 samples of 5708384 calls.

Execution time mean : 7,283686 ns

Execution time std-deviation : 0,130028 ns

Execution time lower quantile : 7,138009 ns ( 2,5%)
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and:

user> (quick-bench (goo 123))

Evaluation count : 34250304 in 6 samples of 5708384 calls.

Execution time mean : 7,283686 ns

Execution time std-deviation : 0,130028 ns

Execution time lower quantile : 7,138009 ns ( 2,5%)

Execution time upper quantile : 7,444272 ns (97,5%)

Overhead used : 10,475943 ns

To look more deeply in what happens under the hood in these test procedures, let’s use

no.disassemble2 library to view the resulting byte-code for foo:

// Method descriptor #11 (Ljava/lang/Object;)Ljava/lang/Object;

// Stack: 8, Locals: 2

public static java.lang.Object invokeStatic(java.lang.Object

x);

0 aload_0 [x]

1 aconst_null

2 astore_0 [x]

3 astore_1 [x__16079]

4 aload_1 [x__16079]

5 aconst_null

6 invokestatic

clojure.lang.Util.identical(java.lang.Object,

java.lang.Object) : boolean [17]

9 ifeq 18

12 aconst_null

13 pop

14 goto 79

17 pop

18 new java.lang.AssertionError [19]

21 dup

22 getstatic kongra.ch$foo.const__1 : clojure.lang.Var [23]

25 invokevirtual clojure.lang.Var.getRawRoot() :

java.lang.Object [29]

28 checkcast clojure.lang.IFn [31]

31 ldc <String "Assert failed: "> [33]

33 getstatic kongra.ch$foo.const__2 : clojure.lang.Var [36]

36 invokevirtual clojure.lang.Var.getRawRoot() :

java.lang.Object [29]

39 checkcast clojure.lang.IFn [31]

42 aload_1 [x__16079]

43 invokeinterface

clojure.lang.IFn.invoke(java.lang.Object) :

java.lang.Object [39] [nargs: 2]

48 ldc <String "\n"> [41]

50 getstatic kongra.ch$foo.const__3 : clojure.lang.Var [44]

53 invokevirtual clojure.lang.Var.getRawRoot() :

java.lang.Object [29]

56 checkcast clojure.lang.IFn [31]

59 getstatic kongra.ch$foo.const__4 : java.lang.Object [48]

62 invokeinterface

clojure.lang.IFn.invoke(java.lang.Object) :

java.lang.Object [39] [nargs: 2]

2https://github.com/gtrak/no.disassemble
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67 invokeinterface

clojure.lang.IFn.invoke(java.lang.Object,

java.lang.Object, java.lang.Object, java.lang.Object) :

java.lang.Object [51] [nargs: 5]

72 invokespecial

java.lang.AssertionError(java.lang.Object) [54]

75 checkcast java.lang.Throwable [56]

78 athrow

79 aload_1 [x__16079]

80 aconst_null

81 astore_1

82 areturn

When Clojure direct linking is enabled, we have an even more optimized code like:

public static java.lang.Object invokeStatic(java.lang.Object

x);

0 aload_0 [x]

1 aconst_null

2 astore_0 [x]

3 astore_1 [x__12541]

4 aload_1 [x__12541]

5 aconst_null

6 invokestatic

clojure.lang.Util.identical(java.lang.Object,

java.lang.Object) : boolean [17]

9 ifeq 19

12 getstatic java.lang.Boolean.FALSE : java.lang.Boolean

[23]

15 goto 22

18 pop

19 getstatic java.lang.Boolean.TRUE : java.lang.Boolean

[26]

22 dup

23 ifnull 37

26 getstatic java.lang.Boolean.FALSE : java.lang.Boolean

[23]

29 if_acmpeq 38

32 aconst_null

33 pop

34 goto 92

37 pop

38 new java.lang.AssertionError [28]

41 dup

42 ldc <String "Assert failed: "> [30]

44 iconst_3

45 anewarray java.lang.Object [32]

48 dup

49 iconst_0

50 aload_1 [x__12541]

51 invokestatic
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48 dup

49 iconst_0

50 aload_1 [x__12541]

51 invokestatic

kongra.ch$chmsg.invokeStatic(java.lang.Object) :

java.lang.Object [36]

54 aastore

55 dup

56 iconst_1

57 ldc <String "\n"> [38]

59 aastore

60 dup

61 iconst_2

62 iconst_1

63 anewarray java.lang.Object [32]

66 dup

67 iconst_0

68 getstatic kongra.ch$foo.const__5 : java.lang.Object [42]

71 aastore

72 invokestatic

clojure.lang.ArraySeq.create(java.lang.Object[]) :

clojure.lang.ArraySeq [48]

75 invokestatic

clojure.core$pr_str.invokeStatic(clojure.lang.ISeq) :

java.lang.Object [53]

78 aastore

79 invokestatic

clojure.lang.ArraySeq.create(java.lang.Object[]) :

clojure.lang.ArraySeq [48]

82 invokestatic

clojure.core$str.invokeStatic(java.lang.Object,

clojure.lang.ISeq) : java.lang.Object [58]

85 invokespecial

java.lang.AssertionError(java.lang.Object) [61]

88 checkcast java.lang.Throwable [63]

91 athrow

92 aload_1 [x__12541]

93 aconst_null

94 astore_1

95 areturn

The code is actually a call to the (assert . . . ) form as defined in the original (ch

. . . ) mechanism. With this in mind we may be certain to get a very efficient check-

instrumenting code in all the places we use the ch library, and the actual cost of every

check depends solely on the nature (and cost) of the predicates he uses. It is the respon-

sibility of the programmer to keep them as cheap as possible. From what is well known

the instanceof predicates in the JVM are particularly fast and cheap both on the CPU

and the memory side. The following section discusses a way the ch library approaches

the type-checks.
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java.lang.Object, java.lang.Object, java.lang.Object) :

java.lang.Object [51] [nargs: 5]

72 invokespecial

java.lang.AssertionError(java.lang.Object) [54]

75 checkcast java.lang.Throwable [56]

78 athrow

79 aload_1 [x__16079]

80 aconst_null

81 astore_1

82 areturn

When Clojure direct linking is enabled, we have an even more optimized code like:

public static java.lang.Object invokeStatic(java.lang.Object

x);

0 aload_0 [x]

1 aconst_null

2 astore_0 [x]

3 astore_1 [x__12541]

4 aload_1 [x__12541]

5 aconst_null

6 invokestatic

clojure.lang.Util.identical(java.lang.Object,

java.lang.Object) : boolean [17]

9 ifeq 19

12 getstatic java.lang.Boolean.FALSE : java.lang.Boolean

[23]

15 goto 22

18 pop

19 getstatic java.lang.Boolean.TRUE : java.lang.Boolean

[26]

22 dup

23 ifnull 37

26 getstatic java.lang.Boolean.FALSE : java.lang.Boolean

[23]

29 if_acmpeq 38

32 aconst_null

33 pop

34 goto 92

37 pop

38 new java.lang.AssertionError [28]

41 dup

42 ldc <String "Assert failed: "> [30]

44 iconst_3

45 anewarray java.lang.Object [32]

48 dup

49 iconst_0

50 aload_1 [x__12541]

51 invokestatic
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63 anewarray java.lang.Object [32]

66 dup
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68 getstatic kongra.ch$foo.const__5 : java.lang.Object [42]

71 aastore

72 invokestatic

clojure.lang.ArraySeq.create(java.lang.Object[]) :

clojure.lang.ArraySeq [48]
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The code is actually a call to the (assert . . . ) form as defined in the original (ch

. . . ) mechanism. With this in mind we may be certain to get a very efficient check-

instrumenting code in all the places we use the ch library, and the actual cost of every

check depends solely on the nature (and cost) of the predicates he uses. It is the respon-

sibility of the programmer to keep them as cheap as possible. From what is well known

the instanceof predicates in the JVM are particularly fast and cheap both on the CPU

and the memory side. The following section discusses a way the ch library approaches

the type-checks.



126

 Low-Cost Dynamic Constraint ...

5 Class Membership Ch(eck)s

To come up with a proper, fast, run-time type checking, we first provide the following

macro that makes the instance? call:

;; CLASS MEMBERSHIP

(defch chC [c x] ‘(ch (instance? ˜c) ˜x))

Then we are ready to define another utility macro-writing macro defchC that allows the

programmer to define his own type checks (besides the ones defined in the ch library,

see Appendix A):

(defmacro defchC

[chname c]

(let [x (gensym "x__")]

‘(defch ˜chname [˜x] ‘(chC ˜˜c ˜˜x))))

Among the others the check for java.lang.Long type is defined like: (defchC chLong

Long). Now we can turn the procedure (defn foo [x] x) into (defn foo [x] (chLong x)).

The resulting procedure has the performance profile as in the following benchmarking

result:

user> (quick-bench (foo 1))

Evaluation count : 198219084 in 6 samples of 33036514 calls.

Execution time mean : 1,033696 ns

Execution time std-deviation : 0,010647 ns

Execution time lower quantile : 1,012954 ns ( 2,5%)

Execution time upper quantile : 1,040669 ns (97,5%)

Overhead used : 2,032505 ns

Similarly for java.lang.String we have:

user> (quick-bench (chString ""))

Evaluation count : 88947072 in 6 samples of 14824512 calls.

Execution time mean : 4,806284 ns

Execution time std-deviation : 0,094706 ns

Execution time lower quantile : 4,724241 ns ( 2,5%)

Execution time upper quantile : 4,942071 ns (97,5%)

Overhead used : 2,032505 ns

These benchmarks shows two things:

– The modern JVM has perfect ways to optimize type checks up to a level that is

almost hard to notice from a point of a programmer who writes common code,

even in the performance-critical parts.

– Our approach makes no overhead when calling these mechanisms and making the

JVM actually do its job.

6 Object Type Equality Ch(eck)s

In a common programmers’ practice we often have to ensure two objects have exactly

the same type. Check chLike, as defined below, serves exactly that:
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JVM actually do its job.

6 Object Type Equality Ch(eck)s

In a common programmers’ practice we often have to ensure two objects have exactly

the same type. Check chLike, as defined below, serves exactly that:

;; OBJECT TYPE EQUALITY

(defmacro chLike* [y x] ‘(identical? (class ˜y) (class ˜x)))

(defch chLike [y x] ‘(ch (chLike* ˜y) ˜x))

Let’s take look at its performance benchmark, here for two Strings:

user> (quick-bench (chLike "aaa" "bbb"))

Evaluation count : 88657260 in 6 samples of 14776210 calls.

Execution time mean : 4,793546 ns

Execution time std-deviation : 0,079737 ns

Execution time lower quantile : 4,724969 ns ( 2,5%)

Execution time upper quantile : 4,927724 ns (97,5%)

Overhead used : 2,032505 ns

7 Product (Pair/Tuple) and Co-Product (Discriminated Union Type)

Ch(eck)s

To apply more compound checks that use logical operators we define the following

generator of predicate checks:

(defmacro ch*
[op chs x]

(assert (vector? chs) "Must be a chs vector in (ch| ...)")

(assert (seq chs) "(ch| ...) must contain some chs" )

‘(˜op ˜@(map #(pred-call-form % nil x) chs)))

The generator is used to define checks for tuple types and for discriminated union types:

;; PRODUCT (TUPLE)

(defch ch& [chs x] ‘(ch (ch* and ˜chs) ˜x))

;; CO-PRODUCT (DISCRIMINATED UNION TYPE)

(defch ch| [chs x] ‘(ch (ch* or ˜chs) ˜x))

A special case here is a co-product of exactly two types, known as Either a b type

constructor in some languages (e.g. Haskell), and its variant - the Maybe a type con-

structor, that can be defined as typeMaybea = Either ()a. The ch library specifies

them as follows:

(defch chEither [chl chr x] ‘(ch| [˜chl ˜chr] ˜x))

(defch chMaybe [ch x] ‘(chEither chUnit ˜ch ˜x))

And an example benchmark:

user> (quick-bench (chEither chString chLong 1))

Evaluation count : 91910928 in 6 samples of 15318488 calls.

Execution time mean : 4,879827 ns

Execution time std-deviation : 0,660203 ns

Execution time lower quantile : 4,433577 ns ( 2,5%)

Execution time upper quantile : 5,924470 ns (97,5%)

Overhead used : 2,032505 ns
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Again, we cannot see any significant impact on the performance, other than few nanosec-

onds.

8 Registry of Ch(eck)s

Additionally the ch library provides a registry of checks, that helps the programmer to

understand, what kind of checks an object or a collection of objects fulfill. The registry

is actually a mapping from string (a name) into a check:

(def ˆ:private CHS (atom {}))

To register a new check we use the following macro:

(defmacro regch

[ch]

(assert (symbol? ch))

(let [x (gensym "x__")]

‘(regch* ˜(str ch) (fn [˜x] ˜(pred-call-form ch nil x)))))

together with its back-end:

(defn regch*
[chname ch]

(chUnit

(do

(assert (string? chname))

(assert (fn? ch))

(swap! CHS

(fn [m]

(when (m chname)

(println "WARNING: chname already in use:"

chname))

(assoc m chname ch))) nil)))

Now we may use chs function:

(defn chs

([]

(chSet (apply sorted-set (sort (keys @CHS)))))

([x]

(chSet (->> @CHS

(filter (fn [[_ pred]] (pred x)))

(map first)

(apply sorted-set))))

([x & xs]

(chSet (->> (cons x xs) (map chs) (apply

cset/intersection)))))

to reach for the information, e.g.:

user> (chs 1)

#{"chInteger" "chLong" "chNumber" "chRational"}
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to reach for the information, e.g.:

user> (chs 1)

#{"chInteger" "chLong" "chNumber" "chRational"}

user> (chs "a")

#{"chString"}

user> (chs [1 2 3])

#{"chAssoc" "chColl" "chCounted" "chIfn" "chIndexed"

"chJavaColl" "chJavaList" "chLookup" "chReversible"

"chSeqable" "chSequential" "chVec"}

user> (chs inc)

#{"chFn" "chIfn"}

There is also a possibility to ask for checks common for a set of objects:

user> (chs 1)

#{"chInteger" "chLong" "chNumber" "chRational"}

user> (chs 1.23)

#{"chDouble" "chFloat" "chNumber"}

user> (chs 3/4)

#{"chNumber" "chRatio" "chRational"}

user> (chs 1 1.23 3/4)

#{"chNumber"}

Using the information provided the programmer can make a decision on what checks

to use in a particular situation.

9 Example Use in Production Setting

The ch library is used extensively in production. Among the others it was used to

tag some of the elements of kongra/prelude package. With the following namespace

declaration:

(ns kongra.prelude.search

(:require [kongra.ch :refer :all]

[kongra.prelude :refer :all]))

we define tree-search routines in the kongra.prelude.search namespace. In the first

place we define a combiner function that controls the tree search process, by perform-

ing order-wise concatenation of search space elements. The concatenation operates on

sequences and returns a sequence, thus the use of chSeq in the following code:

;; COMBINERS

(deftype Comb [f]

clojure.lang.IFn

(invoke [_ nodes new-nodes]

(chSeq (f (chSeq nodes) (chSeq new-nodes)))))

For the combiner we define a chComb ch(eck) and a proper constructor (consComb):

(defchC chComb Comb)

(defn consComb [f] (Comb. (chIfn f)))

The combiners for breath-first and depth-first search strategies are defined as follows:

(def breadth-first-combiner (consComb concat))

(def lazy-breadth-first-combiner (consComb lazy-cat’))
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user> (chs 3/4)

#{"chNumber" "chRatio" "chRational"}

user> (chs 1 1.23 3/4)

#{"chNumber"}

Using the information provided the programmer can make a decision on what checks

to use in a particular situation.

9 Example Use in Production Setting

The ch library is used extensively in production. Among the others it was used to

tag some of the elements of kongra/prelude package. With the following namespace

declaration:

(ns kongra.prelude.search

(:require [kongra.ch :refer :all]

[kongra.prelude :refer :all]))

we define tree-search routines in the kongra.prelude.search namespace. In the first

place we define a combiner function that controls the tree search process, by perform-

ing order-wise concatenation of search space elements. The concatenation operates on

sequences and returns a sequence, thus the use of chSeq in the following code:

;; COMBINERS

(deftype Comb [f]

clojure.lang.IFn

(invoke [_ nodes new-nodes]

(chSeq (f (chSeq nodes) (chSeq new-nodes)))))

For the combiner we define a chComb ch(eck) and a proper constructor (consComb):

(defchC chComb Comb)

(defn consComb [f] (Comb. (chIfn f)))

The combiners for breath-first and depth-first search strategies are defined as follows:

(def breadth-first-combiner (consComb concat))

(def lazy-breadth-first-combiner (consComb lazy-cat’))
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(def depth-first-combiner (consComb #(concat %2 %1)))

(def lazy-depth-first-combiner (consComb #(lazy-cat %2 %1)))

Using exactly the same pattern we define an abstraction for goal functions

;; GOAL

(deftype Goal [f]

clojure.lang.IFn

(invoke [_ x] (boolean (f x))))

(defchC chGoal ‘Goal)

(defn consGoal [f] (Goal. (chIfn f)))

and for adjacency generators for the tree structure:

;; ADJACENCY

(deftype Adjs [f]

clojure.lang.IFn

(invoke [_ x] (chSeq (f x))))

(defchC chAdjs Adjs)

(defn consAdjs [f] (Adjs. (chIfn f)))

Finally the general tree-search procedure uses all the checks defined earlier as presented

in the following listing:

(defn tree-search

[start goal? adjs comb]

(chGoal goal?) (chAdjs adjs) (chComb comb)

(chMaybe chSome

(loop [nodes (list start)]

(when (seq nodes)

(let [obj (first nodes)]

(if (goal? obj)

obj

(recur (comb (rest nodes) (adjs obj)))))))))

Both major search strategies have the implementations like:

(defn breadth-first-search

[start goal? adjs]

(chMaybe chSome

(tree-search start

(chGoal goal?)

(chAdjs adjs)

breadth-first-combiner)))

and:

(defn depth-first-search

[start goal? adjs]

(chMaybe chSome

(tree-search start
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A very useful procedure breadth-first-tree-levels that returns consecutive depth levels

of a tree also uses the mechanisms.

(defn breadth-first-tree-levels

[start adjs]

(chAdjs adjs)

(chSeq (->> (list start)

(iterate #(mapcat adjs %))

(map chSeq’)

(take-while seq))))

And finally the following traversal mechanism returns a lazily evaluated sequence of all

tree nodes visited according to a breadth-first strategy:

(defn breadth-first-tree-seq

([start adjs]

(chAdjs adjs)

(chSeq (apply concat (breadth-first-tree-levels start

adjs))))

([start adjs depth]

(chAdjs adjs)

(chPosLong depth)

(chSeq (->> (breadth-first-tree-levels start adjs)

(take depth)

(apply concat)))))

10 Plans for the Future Development

Performing the dynamic (run-time) checks for various constraints, including the veri-

fication of types is not enough to ensure proper integrity of software projects. Many

factors come to mind here, including:

– Multiple versions of libraries that software projects depend upon, together with

the information on the actual use of these dependencies, circularity of dependen-

cies, and general lack of reliable sources of coherent packages (libraries) bundled

together.

– Lack of the ability to effectively model highly complex systems, like the Java 8

Language Specification, being turned on into a working compiler or at least a static

analyzer working according to the rules present in the specification. The estimated

amount of work for creating Java compiler is hundreds of man-years, while it would

be great to be able to perform activities like that in time an order of magnitude

shorter. Problems of this kind were already discussed by us in [11].

These issues and the possibility to solve them in an uniform way will be subjects of

our further research activities. We tend to make ch library a part of the solution.
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(defch chRecord ‘(ch record?))

(defch chReduced ‘(ch reduced?))

(defch chReversible ‘(ch reversible?))

(defch chSeq ‘(ch seq?))

(defch chSorted ‘(ch sorted?))

(defch chString ‘(ch string?))

(defch chSymbol ‘(ch symbol?))

(defch chVar ‘(ch var?))

(defch chVec ‘(ch vector?))

Finally we introduce type checks for few basic Java collection interfaces. It is worth

mentioning, that all Clojure collections implement one of these interfaces:

(defchC chJavaColl java.util.Collection)

(defchC chJavaList java.util.List)

(defchC chJavaMap java.util.Map)

(defchC chJavaSet java.util.Set)

B Appendix: Selected Tests

The ch library is covered with unit tests. Here we present few of them to give the

reader another opportunity to get familiar with syntax and behavior of the library. In

the following codes we use the namespace definition as below:

(ns kongra.ch-test

(:require [clojure.test :refer :all]

[kongra.ch :refer :all]))

First of all let’s define few types with their accompanying type checks:

(deftype X []) (defchC chX X)

(deftype Y []) (defchC chY Y)

(deftype Z []) (defchC chZ Z)

We also define the following simple checks of various kinds:

(defch chMaybeX ‘(chMaybe chX ))

(defch chEitherXUnit ‘(chEither chX chUnit ))

(defch chEitherXY ‘(chEither chX chY ))

(defch chXYZ ‘(ch| [chX chY chZ] ))

(defch chMaybeLike1 ‘(chMaybe (chLike 1 )))

(defch chEitherLC ‘(chEither (chC Long) (chC Character)))

(defch chEitherLC’

‘(chEither (ch (instance? Long)) (ch (instance? Character))))

as well as the compound one:

(defch chCompound1

‘(chEither

(chMaybe (chLike "aaa"))

(chEither (chMaybe (ch (instance? Long)))

(chMaybe (ch (instance? Character))))))
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the following codes we use the namespace definition as below:
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(:require [clojure.test :refer :all]
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(defch chEitherXY ‘(chEither chX chY ))

(defch chXYZ ‘(ch| [chX chY chZ] ))

(defch chMaybeLike1 ‘(chMaybe (chLike 1 )))

(defch chEitherLC ‘(chEither (chC Long) (chC Character)))

(defch chEitherLC’

‘(chEither (ch (instance? Long)) (ch (instance? Character))))

as well as the compound one:

(defch chCompound1

‘(chEither

(chMaybe (chLike "aaa"))

(chEither (chMaybe (ch (instance? Long)))

(chMaybe (ch (instance? Character))))))

Here the test cases follow:

(testing "(ch ...)"

(is (thrown? AssertionError (ch (nil?) 1)))

(is (nil? (ch (nil?) nil)))

(is (false? (ch (nil?) nil 1)))

(is (true? (ch (nil?) nil nil))))

(testing "(ch ...) with symbolic preds"

(is (thrown? AssertionError (ch nil? 1)))

(is (nil? (ch nil? nil)))

(is (false? (ch nil? nil 1)))

(is (true? (ch nil? nil nil))))

(testing "(chC ...)"

(is (= "" (chC String "")))

(is (thrown? AssertionError (chC String 1)))

(is (thrown? AssertionError (chC String nil)))

(is (true? (chC String nil "")))

(is (false? (chC String nil 1)))

(is (false? (chC String nil nil))))

(testing "(defchC ...)"

(is (chX (X.)))

(is (thrown? AssertionError (chX 1)))

(is (thrown? AssertionError (chX nil)))

(is (true? (chX nil (X.))))

(is (false? (chX nil 1)))

(is (false? (chX nil nil))))

(testing "(chLike ...)"

(is (chLike 1 2))

(is (thrown? AssertionError (chLike 1 "aaa")))

(is (thrown? AssertionError (chLike "aaa" 2)))

(is (thrown? AssertionError (chLike 1 nil)))

(is (true? (chLike 2/3 nil 3/4)))

(is (false? (chLike 1 nil "aaa")))

(is (false? (chLike "aaa" nil 2)))

(is (false? (chLike 1 nil nil))))

(testing "(chUnit ...)"

(is (nil? (chUnit nil)))

(is (thrown? AssertionError (chUnit 1)))

(is (true? (chUnit nil nil)))

(is (false? (chUnit nil ""))))

(testing "(chSome ...)"

(is (chSome 1))
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Here the test cases follow:

(testing "(ch ...)"

(is (thrown? AssertionError (ch (nil?) 1)))

(is (nil? (ch (nil?) nil)))

(is (false? (ch (nil?) nil 1)))

(is (true? (ch (nil?) nil nil))))

(testing "(ch ...) with symbolic preds"

(is (thrown? AssertionError (ch nil? 1)))

(is (nil? (ch nil? nil)))

(is (false? (ch nil? nil 1)))

(is (true? (ch nil? nil nil))))

(testing "(chC ...)"

(is (= "" (chC String "")))

(is (thrown? AssertionError (chC String 1)))

(is (thrown? AssertionError (chC String nil)))

(is (true? (chC String nil "")))

(is (false? (chC String nil 1)))

(is (false? (chC String nil nil))))

(testing "(defchC ...)"

(is (chX (X.)))

(is (thrown? AssertionError (chX 1)))

(is (thrown? AssertionError (chX nil)))

(is (true? (chX nil (X.))))

(is (false? (chX nil 1)))

(is (false? (chX nil nil))))

(testing "(chLike ...)"

(is (chLike 1 2))

(is (thrown? AssertionError (chLike 1 "aaa")))

(is (thrown? AssertionError (chLike "aaa" 2)))

(is (thrown? AssertionError (chLike 1 nil)))

(is (true? (chLike 2/3 nil 3/4)))

(is (false? (chLike 1 nil "aaa")))

(is (false? (chLike "aaa" nil 2)))

(is (false? (chLike 1 nil nil))))

(testing "(chUnit ...)"

(is (nil? (chUnit nil)))

(is (thrown? AssertionError (chUnit 1)))

(is (true? (chUnit nil nil)))

(is (false? (chUnit nil ""))))

(testing "(chSome ...)"

(is (chSome 1))
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(is (thrown? AssertionError (chSome nil)))

(is (true? (chSome nil "")))

(is (false? (chSome nil nil))))

(testing "(chMaybe ...)"

(is (nil? (chMaybe chX nil)))

(is (chMaybe chX (X.)))

(is (thrown? AssertionError (chMaybe chX (Y.))))

(is (true? (chMaybe chX nil nil)))

(is (true? (chMaybe chX nil (X.))))

(is (false? (chMaybe chX nil (Y.))))

(is (nil? (chMaybe chUnit nil)))

(is (thrown? AssertionError (chMaybe chUnit (X.))))

(is (thrown? AssertionError (chMaybe chUnit (Y.)))))

(testing "(chEither ...)"

(is (nil? (chEither chX chUnit nil)))

(is (chEither chX chUnit (X.)))

(is (thrown? AssertionError (chEither chX chUnit (Y.))))

(is (chEither chX chY (X.)))

(is (chEither chX chY (Y.)))

(is (thrown? AssertionError (chEither chX chY (Z.))))

(is (thrown? AssertionError (chEither chX chY nil)))

(is (true? (chEither chX chUnit nil nil)))

(is (true? (chEither chX chUnit nil (X.))))

(is (false? (chEither chX chUnit nil (Y.))))

(is (true? (chEither chX chY nil (X.))))

(is (true? (chEither chX chY nil (Y.))))

(is (false? (chEither chX chY nil (Z.))))

(is (false? (chEither chX chY nil nil))))

(testing "(chCompound1 ...)"

(is (chCompound1 (+ 1 2 3 4)))

(is (chCompound1 \c))

(is (chCompound1 "xyz"))

(is (nil? (chCompound1 nil)))

(is (thrown? AssertionError (chCompound1 3/4)))

(is (true? (chCompound1 nil (+ 1 2 3 4))))

(is (true? (chCompound1 nil \c)))

(is (true? (chCompound1 nil "xyz")))

(is (true? (chCompound1 nil nil)))

(is (false? (chCompound1 nil 3/4))))
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(is (thrown? AssertionError (chSome nil)))

(is (true? (chSome nil "")))

(is (false? (chSome nil nil))))

(testing "(chMaybe ...)"

(is (nil? (chMaybe chX nil)))

(is (chMaybe chX (X.)))

(is (thrown? AssertionError (chMaybe chX (Y.))))

(is (true? (chMaybe chX nil nil)))

(is (true? (chMaybe chX nil (X.))))

(is (false? (chMaybe chX nil (Y.))))

(is (nil? (chMaybe chUnit nil)))

(is (thrown? AssertionError (chMaybe chUnit (X.))))

(is (thrown? AssertionError (chMaybe chUnit (Y.)))))

(testing "(chEither ...)"

(is (nil? (chEither chX chUnit nil)))

(is (chEither chX chUnit (X.)))

(is (thrown? AssertionError (chEither chX chUnit (Y.))))

(is (chEither chX chY (X.)))

(is (chEither chX chY (Y.)))

(is (thrown? AssertionError (chEither chX chY (Z.))))

(is (thrown? AssertionError (chEither chX chY nil)))

(is (true? (chEither chX chUnit nil nil)))

(is (true? (chEither chX chUnit nil (X.))))

(is (false? (chEither chX chUnit nil (Y.))))

(is (true? (chEither chX chY nil (X.))))

(is (true? (chEither chX chY nil (Y.))))

(is (false? (chEither chX chY nil (Z.))))

(is (false? (chEither chX chY nil nil))))

(testing "(chCompound1 ...)"

(is (chCompound1 (+ 1 2 3 4)))

(is (chCompound1 \c))

(is (chCompound1 "xyz"))

(is (nil? (chCompound1 nil)))

(is (thrown? AssertionError (chCompound1 3/4)))

(is (true? (chCompound1 nil (+ 1 2 3 4))))

(is (true? (chCompound1 nil \c)))

(is (true? (chCompound1 nil "xyz")))

(is (true? (chCompound1 nil nil)))

(is (false? (chCompound1 nil 3/4))))




