

Volume 8 Number 1 2016

Volume 8 Number 1 2016

INTERNATIONAL JOURNAL OF APPLIED COMPUTER SCIENCE METHODS (JACSM)
is a semi-annual periodical published by the University of Social Sciences (SAN)
in Lodz, Poland.

PUBLISHING AND EDITORIAL OFFICE:
University of Social Sciences (SAN)
Information Technology Institute (ITI)
Sienkiewicza 9
90-113 Lodz
Tel.: +48 42 6646654
Fax.: +48 42 6366251
E-mail: acsm@spoleczna.pl
URL: https://www.degruyter.com/view/j/jacsm

Print: Mazowieckie Centrum Poligrafii, ul. Słoneczna 3C, 05-270 Marki, www.c-p.com.pl, biuro@c-p.com.pl

Copyright © 2016 University of Social Sciences, Lodz, Poland. All rights reserved.

AIMS AND SCOPE:
The International Journal of Applied Computer Science Methods is a semi-annual, refereed
periodical, publishes articles describing recent contributions in theory, practice and applications
of computer science. The broad scope of the journal includes, but is not limited to, the follow-
ing subject areas:
Knowledge Engineering and Information Management: Knowledge Processing, Knowledge
Representation, Data Mining, Machine Learning, Knowledge-based Systems, Knowledge Elici-
tation, Knowledge Acquisition, E-learning, Web-intelligence, Collective Intelligence, Language
Processing, Approximate Reasoning, Information Archive and Processing, Distributed Infor-
mation Systems.
Intelligent Systems: Intelligent Database Systems, Expert Systems, Decision Support Systems,
Intelligent Agent Systems, Artificial Neural Networks, Fuzzy Sets and Systems, Evolutionary
Methods and Systems, Hybrid Intelligent Systems, Cognitive Systems, Intelligent Systems and
Internet, Complex Adaptive Systems.
Image Understanding and Processing: Computer Vision, Image Processing, Computer
Graphics, Pattern Recognition, Virtual Reality, Multimedia Systems.
Computer Modeling, Simulation and Soft Computing: Applied Computer Modeling and
Simulation, Intelligent Computing and Applications, Soft Computing Methods, Intelligent Data
Analysis, Parallel Computing, Engineering Algorithms.
Applied Computer Methods and Computer Technology: Programming Technology, Data-
base Systems, Computer Networks Technology, Human-computer Interface, Computer Hard-
ware Engineering, Internet Technology, Biocybernetics.

DISTRIBUTION:
Apart from the standard way of distribution (in the conventional paper format), on-line dissem-
ination of the JACSM is possible for interested readers.

Contents

Yusong Liu, Zhixun Su, Bingjie Zhang,
Xiaoling Gong, Zhaoyang Sang
Convergence Analysis of an Improved Extreme
Learning Machine Based on Gradient Descent Method 5

Grzegorz Sowa, Alina Marchlewska
The Internet of Things:
Technological and Social Aspects 17

Zbigniew Filutowicz, Krzysztof Przybyszewski,
Józef Paszkowski
Selected Examples of Applications of New
Graphics and Animation Technologies 29

Nagesha, Sunilkumar S. Manvi
Resource Monitoring for Wireless
Sensor Networks Using Anfis 41

Konrad Grzanek
Monadic Printing Revisited 69

INTERNATIONAL JOURNAL OF APPLIED COMPUTER SCIENCE METHODS (JACSM)
is a semi-annual periodical published by the University of Social Sciences (SAN)
in Lodz, Poland.

PUBLISHING AND EDITORIAL OFFICE:
University of Social Sciences (SAN)
Information Technology Institute (ITI)
Sienkiewicza 9
90-113 Lodz
Tel.: +48 42 6646654
Fax.: +48 42 6366251
E-mail: acsm@spoleczna.pl
URL: https://www.degruyter.com/view/j/jacsm

Print: Mazowieckie Centrum Poligrafii, ul. Słoneczna 3C, 05-270 Marki, www.c-p.com.pl, biuro@c-p.com.pl

Copyright © 2016 University of Social Sciences, Lodz, Poland. All rights reserved.

AIMS AND SCOPE:
The International Journal of Applied Computer Science Methods is a semi-annual, refereed
periodical, publishes articles describing recent contributions in theory, practice and applications
of computer science. The broad scope of the journal includes, but is not limited to, the follow-
ing subject areas:
Knowledge Engineering and Information Management: Knowledge Processing, Knowledge
Representation, Data Mining, Machine Learning, Knowledge-based Systems, Knowledge Elici-
tation, Knowledge Acquisition, E-learning, Web-intelligence, Collective Intelligence, Language
Processing, Approximate Reasoning, Information Archive and Processing, Distributed Infor-
mation Systems.
Intelligent Systems: Intelligent Database Systems, Expert Systems, Decision Support Systems,
Intelligent Agent Systems, Artificial Neural Networks, Fuzzy Sets and Systems, Evolutionary
Methods and Systems, Hybrid Intelligent Systems, Cognitive Systems, Intelligent Systems and
Internet, Complex Adaptive Systems.
Image Understanding and Processing: Computer Vision, Image Processing, Computer
Graphics, Pattern Recognition, Virtual Reality, Multimedia Systems.
Computer Modeling, Simulation and Soft Computing: Applied Computer Modeling and
Simulation, Intelligent Computing and Applications, Soft Computing Methods, Intelligent Data
Analysis, Parallel Computing, Engineering Algorithms.
Applied Computer Methods and Computer Technology: Programming Technology, Data-
base Systems, Computer Networks Technology, Human-computer Interface, Computer Hard-
ware Engineering, Internet Technology, Biocybernetics.

DISTRIBUTION:
Apart from the standard way of distribution (in the conventional paper format), on-line dissem-
ination of the JACSM is possible for interested readers.

Contents

Yusong Liu, Zhixun Su, Bingjie Zhang,
Xiaoling Gong, Zhaoyang Sang
Convergence Analysis of an Improved Extreme
Learning Machine Based on Gradient Descent Method 5

Grzegorz Sowa, Alina Marchlewska
The Internet of Things:
Technological and Social Aspects 17

Zbigniew Filutowicz, Krzysztof Przybyszewski,
Józef Paszkowski
Selected Examples of Applications of New
Graphics and Animation Technologies 29

Nagesha, Sunilkumar S. Manvi
Resource Monitoring for Wireless
Sensor Networks Using Anfis 41

Konrad Grzanek
Monadic Printing Revisited 69

5

CONVERGENCE ANALYSIS OF AN IMPROVED EXTREME
LEARNING MACHINE BASED ON GRADIENT DESCENT

METHOD

Yusong Liu1,2, Zhixun Su1, Bingjie Zhang2, Xiaoling Gong3, Zhaoyang Sang2

1 School of Mathematical Sciences,
Dalian University of Technology, Dalian 116024, China

yangguolingfwz@163.com
ysliu1758@163.com

2 College of Science,
China University of Petroleum (Huadong), Qingdao 266580, China

3 College of Information and Control Engineering,
China University of Petroleum (Huadong), Qingdao 266580, China

Abstract
Extreme learning machine (ELM) is an efficient algorithm, but it requires more
hidden nodes than the BP algorithms to reach the matched performance.
Recently, an efficient learning algorithm, the upper-layer-solution-unaware
algorithm (USUA), is proposed for the single-hidden layer feed-forward neural
network. It needs less number of hidden nodes and testing time than ELM. In
this paper, we mainly give the theoretical analysis for USUA. Theoretical
results show that the error function monotonously decreases in the training
procedure, the gradient of the error function with respect to weights tends to
zero (the weak convergence), and the weight sequence goes to a fixed point (the
strong convergence) when the iterations approach positive infinity. An
illustrated simulation has been implemented on the MNIST database of
handwritten digits which effectively verifies the theoretical results..

Key words: Neural networks, Monotonicity, Weak convergence, Strong
convergence, USUA, MNIST.

1 Introduction

Neural network has been a hot topic recently in many fields, such as cognitive
science, prediction, classification, computational intelligence. The back-
propagation (BP) algorithm is one of the most widely used techniques for
training feed-forward neural networks (FNN), which was separately proposed
by Werbos [1] and Rumelhart et al.[2]. The BP algorithm attempts to mini-

5

CONVERGENCE ANALYSIS OF AN IMPROVED EXTREME
LEARNING MACHINE BASED ON GRADIENT DESCENT

METHOD

Yusong Liu1,2, Zhixun Su1, Bingjie Zhang2, Xiaoling Gong3, Zhaoyang Sang2

1 School of Mathematical Sciences,
Dalian University of Technology, Dalian 116024, China

yangguolingfwz@163.com
ysliu1758@163.com

2 College of Science,
China University of Petroleum (Huadong), Qingdao 266580, China

3 College of Information and Control Engineering,
China University of Petroleum (Huadong), Qingdao 266580, China

Abstract
Extreme learning machine (ELM) is an efficient algorithm, but it requires more
hidden nodes than the BP algorithms to reach the matched performance.
Recently, an efficient learning algorithm, the upper-layer-solution-unaware
algorithm (USUA), is proposed for the single-hidden layer feed-forward neural
network. It needs less number of hidden nodes and testing time than ELM. In
this paper, we mainly give the theoretical analysis for USUA. Theoretical
results show that the error function monotonously decreases in the training
procedure, the gradient of the error function with respect to weights tends to
zero (the weak convergence), and the weight sequence goes to a fixed point (the
strong convergence) when the iterations approach positive infinity. An
illustrated simulation has been implemented on the MNIST database of
handwritten digits which effectively verifies the theoretical results..

Key words: Neural networks, Monotonicity, Weak convergence, Strong
convergence, USUA, MNIST.

1 Introduction

Neural network has been a hot topic recently in many fields, such as cognitive
science, prediction, classification, computational intelligence. The back-
propagation (BP) algorithm is one of the most widely used techniques for
training feed-forward neural networks (FNN), which was separately proposed
by Werbos [1] and Rumelhart et al.[2]. The BP algorithm attempts to mini-

6

Convergence Analysis of ...

mize the least squared error of objective function, which is defined by the
differences between the actual outputs and the desired outputs [3]. In BP algo-
rithm, all the weights of FNN need to be tuned along the negative gradient
direction of the error function using the gradient descent method.

The BP algorithm for FNN has the ability of approximating nonlinear
functions directly from the input samples. However, the training procedure of
the BP algorithm is usually very time consuming. The reasons come from two
aspects: (1) the gradient-based learning algorithms are used in training the
neural networks, and (2) all weights of the neural networks are tuned in each
iteration.

To overcome these shortcomings, Huang et al.[4] proposed a novel learn-
ing algorithm called extreme learning machine (ELM) for single-hidden layer
feed-forward neural networks (SHLFN), which randomly chooses hidden
weights and determines the output weights of SHLFN.

Specifically speaking, in ELM algorithm, the weights connecting the input
and hidden layers are selected randomly, and the weights connecting the hid-
den and output layers are only calculated using the pseudo inverse once.
There is no iteration step in the training procedure. In addition, the training
speed of ELM is much faster than that of the BP learning algorithms when
reaching the comparable performance.

Although ELM can be trained efficiently, it requires more hidden nodes
than the BP algorithms for the trained neural networks. This apparently in-
creases testing time which does not effectively work well in real applications.

Yu et al.[5] proposed a series of efficient learning algorithms for SHLFN.
The main idea is that, giving the initial weights of FNN, the weights connect-
ing the input and hidden layers are tuned in the negative gradient direction
along which the square error is reduced the most, and then the weights con-
necting the hidden and output layers are calculated using the pseudo inverse.
Numerical experiment shows that the proposed algorithms in [5] need less
number of hidden nodes and testing time than ELM.

Unfortunately, there is little theoretical analysis to guarantee the conver-
gent behavior during training. In this paper, we rigorously prove the theoreti-
cal results for the upper-layer-solution-unaware algorithm (USUA) proposed
by Yu et al.[5]. The error function monotonously decreases during training.
The weak convergence and the strong convergence show that the gradient of
the error function goes to zero, and the weight sequence goes to a unique
fixed point, respectively. Numerical experiment on the MNIST database of
handwritten digits [6] verifies these theoretical results.

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction to USUA. Section 3 presents the main theoretical results of USUA.
Section 4 rigorously proves these theoretical results. A numerical experiment
is simulated in Section 5.

7

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

2 USUA

The SHLFN is considered. The number of nodes of the input, hidden and
output layers are set to be D, L and C, respectively.

The matrix 1 2(, , ,) D L
L R W w w w represents the weight connec-

tions between the input and hidden layers, where
1 2(, , ,)T D

i i i Diw w w R w is the weight vector connecting the input

nodes and the i-th hidden node. 1 2(, , ,) L C
C R U u u u denotes the

weight matrix connecting the hidden and output layers, where
1 2(, , ,)T L

i i i Liu u u R u is the weight vector connecting the hidden
nodes and the i-th output node. For simplicity, W is rewritten as

1 2(, , ,)T T T T DL
L R V w w w .

Let , :g f R R be the given activation functions of the hidden and
output layers, respectively. For any given vector 1 2(, , ,)T L

Lz z z R z ,
the vector valued function is introduced, denoting as
 1 2() ((), (), , ())T L

Lg z g z g z R G z . (1)
For any given output vector DRx , the actual output vector of the neu-

ral network is CRy , i.e.
 (()).T Tfy U G W x

Yu et al.[5] present an efficient and effective algorithm for training
SHLFN named USUA. The basic idea of USUA is as follows: when the initial
value of V and U are given, the weight matrix U is then fixed, and the weight
matrix V is updated by using the gradient descend method until it reaches the
stop criteria. Then, U is calculated using the pseudo inverse. The detailed
description is as follows.

Given a training sample set with N samples, 1{ }N
iX x is the set of the

input vectors, 1{ }N
iT t is the set of the corresponding ideal outputs, and the

actual output of the output layer are 1{ }N
iY y , where D

i Rx , C
i Rt ,

C
i Ry . The objective function of the neural networks is defined as follows,

2

F

1()
2

E V Y T 2

1

1=
2

N

i i
i

 y t

2

1

1= (())
2

N
T T

i i
i

f

 U G W x t

6

Convergence Analysis of ...

mize the least squared error of objective function, which is defined by the
differences between the actual outputs and the desired outputs [3]. In BP algo-
rithm, all the weights of FNN need to be tuned along the negative gradient
direction of the error function using the gradient descent method.

The BP algorithm for FNN has the ability of approximating nonlinear
functions directly from the input samples. However, the training procedure of
the BP algorithm is usually very time consuming. The reasons come from two
aspects: (1) the gradient-based learning algorithms are used in training the
neural networks, and (2) all weights of the neural networks are tuned in each
iteration.

To overcome these shortcomings, Huang et al.[4] proposed a novel learn-
ing algorithm called extreme learning machine (ELM) for single-hidden layer
feed-forward neural networks (SHLFN), which randomly chooses hidden
weights and determines the output weights of SHLFN.

Specifically speaking, in ELM algorithm, the weights connecting the input
and hidden layers are selected randomly, and the weights connecting the hid-
den and output layers are only calculated using the pseudo inverse once.
There is no iteration step in the training procedure. In addition, the training
speed of ELM is much faster than that of the BP learning algorithms when
reaching the comparable performance.

Although ELM can be trained efficiently, it requires more hidden nodes
than the BP algorithms for the trained neural networks. This apparently in-
creases testing time which does not effectively work well in real applications.

Yu et al.[5] proposed a series of efficient learning algorithms for SHLFN.
The main idea is that, giving the initial weights of FNN, the weights connect-
ing the input and hidden layers are tuned in the negative gradient direction
along which the square error is reduced the most, and then the weights con-
necting the hidden and output layers are calculated using the pseudo inverse.
Numerical experiment shows that the proposed algorithms in [5] need less
number of hidden nodes and testing time than ELM.

Unfortunately, there is little theoretical analysis to guarantee the conver-
gent behavior during training. In this paper, we rigorously prove the theoreti-
cal results for the upper-layer-solution-unaware algorithm (USUA) proposed
by Yu et al.[5]. The error function monotonously decreases during training.
The weak convergence and the strong convergence show that the gradient of
the error function goes to zero, and the weight sequence goes to a unique
fixed point, respectively. Numerical experiment on the MNIST database of
handwritten digits [6] verifies these theoretical results.

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction to USUA. Section 3 presents the main theoretical results of USUA.
Section 4 rigorously proves these theoretical results. A numerical experiment
is simulated in Section 5.

7

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

2 USUA

The SHLFN is considered. The number of nodes of the input, hidden and
output layers are set to be D, L and C, respectively.

The matrix 1 2(, , ,) D L
L R W w w w represents the weight connec-

tions between the input and hidden layers, where
1 2(, , ,)T D

i i i Diw w w R w is the weight vector connecting the input

nodes and the i-th hidden node. 1 2(, , ,) L C
C R U u u u denotes the

weight matrix connecting the hidden and output layers, where
1 2(, , ,)T L

i i i Liu u u R u is the weight vector connecting the hidden
nodes and the i-th output node. For simplicity, W is rewritten as

1 2(, , ,)T T T T DL
L R V w w w .

Let , :g f R R be the given activation functions of the hidden and
output layers, respectively. For any given vector 1 2(, , ,)T L

Lz z z R z ,
the vector valued function is introduced, denoting as
 1 2() ((), (), , ())T L

Lg z g z g z R G z . (1)
For any given output vector DRx , the actual output vector of the neu-

ral network is CRy , i.e.
 (()).T Tfy U G W x

Yu et al.[5] present an efficient and effective algorithm for training
SHLFN named USUA. The basic idea of USUA is as follows: when the initial
value of V and U are given, the weight matrix U is then fixed, and the weight
matrix V is updated by using the gradient descend method until it reaches the
stop criteria. Then, U is calculated using the pseudo inverse. The detailed
description is as follows.

Given a training sample set with N samples, 1{ }N
iX x is the set of the

input vectors, 1{ }N
iT t is the set of the corresponding ideal outputs, and the

actual output of the output layer are 1{ }N
iY y , where D

i Rx , C
i Rt ,

C
i Ry . The objective function of the neural networks is defined as follows,

2

F

1()
2

E V Y T 2

1

1=
2

N

i i
i

 y t

2

1

1= (())
2

N
T T

i i
i

f

 U G W x t

8

Convergence Analysis of ...

2

1 1

1= ((()))
2

N C
T T
j i ji

i j
f t

 u G W x

1 1

= (())
N C

T T
ji j i

i j
f

 u G W x , (2)

where F and stand for the Frobenius norm of matrix and the Euclide-

an norm of vector, respectively, and 21() (())
2ji jif s f s t , s R .

The gradients of the error function ()E V with respect to
(1,2, ,)k k Lw are

 ' '

1 1
() (()) ()

k

N C
T T T

ji j i kj k i i
i j

E f u g

w V u G W x w x x . (3)

Denote

1 2
() ((()) , (()) , , (()))

L

T T T TE E E EV w w wV V V V . (4)
For any given initial weight vector 0V and U , V can be iterated by

the following formula
 1 , 0,1,2,n n n n V V V , (5)
where 1 2=(() , () , , ())n n T n T n T T

L V w w w , and

 ' '

1 1
(()) ()

N C
n T T T
k ji j i kj k i i

i j
f u g

 w u G W x w x x , (6)

where 0 is the learning rate.
At last, U is calculated using the pseudo inverse.

3 The main convergence results

To analyze the convergence of USUA, the following assumptions are needed.
(A1)The activation functions g and f satisfy that, ()g s , ()f s ,

' ()g s , ' ()f s , '' ()g s and '' ()f s are all uniformly bounded for any
s R .

(A2) There are finitely many points in the set
0 { : () 0}E VV V , where is a bounded closed region.

Theorem 1. Assume that assumption (A1) is valid, and the learning rate
satisfies the formula (21) behind. Then, for any arbitrary initial weight vector

0V , the sequence { ()}nE V monotonously decreases, i.e.

9

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

 1() ()n nE E V V ; (7)
there exists * 0E , such that

*lim ()n

n
E E

V ; (8)

and the weak convergence result holds,
 lim () 0n

n
E

V V . (9)

In addition, if assumption (A2) is also valid, then the strong convergence
result holds, i.e. there exists *

0V , such that

*lim n

n
V V . (10)

4 The Proofs

The proofs of the convergence results (Theorem 1) are presented as follows.
Firstly, two useful lemmas are given. For sake of consistency, denote
 1n n n

k k k
 w w w , (11)

 , , 1, ,(())n i n T n i n i n i
i

 G G W x φ G G， . (12)

Lemma 1. If assumption (A1) is valid, then there exist 1 0c and 2 0c ,
satisfying

2 2,

1
1

, 1, 2, , , 1, 2,
L

n i n
k

k
c i N n

 φ w , (13)

 ' "
2 2() , () , , 1, 2, , , 1, 2, ,ji jif s c f s c s R i N j C . (14)

Proof. According to assumption (A1) and the Taylor expansion, we get

2 2, 1, ,=n i n i n i φ G G

21
1 1

1
2 2

1

(()) (())
(()) (())

(()) (())

n T n T
i i

n T n T
i i

n T n T
L i L i

g g
g g

g g

w x w x
w x w x

w x w x

2'
1, , 1

'
2, , 2

'
, ,

() ()
() ()

=

() ()

n T
i n i

n T
i n i

n T
L i n L i

g s
g s

g s

w x
w x

w x

8

Convergence Analysis of ...

2

1 1

1= ((()))
2

N C
T T
j i ji

i j
f t

 u G W x

1 1

= (())
N C

T T
ji j i

i j
f

 u G W x , (2)

where F and stand for the Frobenius norm of matrix and the Euclide-

an norm of vector, respectively, and 21() (())
2ji jif s f s t , s R .

The gradients of the error function ()E V with respect to
(1,2, ,)k k Lw are

 ' '

1 1
() (()) ()

k

N C
T T T

ji j i kj k i i
i j

E f u g

w V u G W x w x x . (3)

Denote

1 2
() ((()) , (()) , , (()))

L

T T T TE E E EV w w wV V V V . (4)
For any given initial weight vector 0V and U , V can be iterated by

the following formula
 1 , 0,1,2,n n n n V V V , (5)
where 1 2=(() , () , , ())n n T n T n T T

L V w w w , and

 ' '

1 1
(()) ()

N C
n T T T
k ji j i kj k i i

i j
f u g

 w u G W x w x x , (6)

where 0 is the learning rate.
At last, U is calculated using the pseudo inverse.

3 The main convergence results

To analyze the convergence of USUA, the following assumptions are needed.
(A1)The activation functions g and f satisfy that, ()g s , ()f s ,

' ()g s , ' ()f s , '' ()g s and '' ()f s are all uniformly bounded for any
s R .

(A2) There are finitely many points in the set
0 { : () 0}E VV V , where is a bounded closed region.

Theorem 1. Assume that assumption (A1) is valid, and the learning rate
satisfies the formula (21) behind. Then, for any arbitrary initial weight vector

0V , the sequence { ()}nE V monotonously decreases, i.e.

9

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

 1() ()n nE E V V ; (7)
there exists * 0E , such that

*lim ()n

n
E E

V ; (8)

and the weak convergence result holds,
 lim () 0n

n
E

V V . (9)

In addition, if assumption (A2) is also valid, then the strong convergence
result holds, i.e. there exists *

0V , such that

*lim n

n
V V . (10)

4 The Proofs

The proofs of the convergence results (Theorem 1) are presented as follows.
Firstly, two useful lemmas are given. For sake of consistency, denote
 1n n n

k k k
 w w w , (11)

 , , 1, ,(())n i n T n i n i n i
i

 G G W x φ G G， . (12)

Lemma 1. If assumption (A1) is valid, then there exist 1 0c and 2 0c ,
satisfying

2 2,

1
1

, 1, 2, , , 1, 2,
L

n i n
k

k
c i N n

 φ w , (13)

 ' "
2 2() , () , , 1, 2, , , 1, 2, ,ji jif s c f s c s R i N j C . (14)

Proof. According to assumption (A1) and the Taylor expansion, we get

2 2, 1, ,=n i n i n i φ G G

21
1 1

1
2 2

1

(()) (())
(()) (())

(()) (())

n T n T
i i

n T n T
i i

n T n T
L i L i

g g
g g

g g

w x w x
w x w x

w x w x

2'
1, , 1

'
2, , 2

'
, ,

() ()
() ()

=

() ()

n T
i n i

n T
i n i

n T
L i n L i

g s
g s

g s

w x
w x

w x

10

Convergence Analysis of ...

2' 2

1 1
(sup () max)

L
n

i ki Ns R k
g s

 x w

2

1
1

L
n
k

k
c

 w ,

where
' 2

1 1
(sup () max)ii Ns R

c g s

 x , and , , (1, 2, ,)k i ns k L lies between
1()n T

k i
w x and ()n T

k iw x .

By the expression of ()jif s and assumption (A1), it is easily known that
' "

2 2() , () , 1, 2, , , 1, 2, , , ,ji jif s c f s c i N j C s R

where
' ' 2 "

2 max{sup (()) () , sup (()) (()) ()}ji ji
s R s R

c f s t f s f s f s t f s

 .

The following lemma is the same as Theorem 14.1.5 [7], therefore we only
list it below without proof.
Lemma 2. [7] Let : (, 1)n mF R R n m be continuous on a bound-
ed closed region nR , and 0 { : () 0}F z z be a finite set. Let
{ }k z be a sequence satisfying

(1) lim () 0k

k
F

z ,

(2) 1lim 0k k

k

 z z ,

then, there exists a *
0z such that

*lim k

k
z z .

Next, the proofs for (7)-(10) are successively presented as follows.
Proof for (7).
By (2) and the Taylor expansion, we have

1() ()n nE E V V

1, ,

1 1
[() ()]

N C
T n i T n i

ji j ji j
i j

f f

 u G u G

' , 1, , " 1, , 2
,

1 1

1[() () ()(())]
2

N C
T n i T n i n i T n i n i

n iji j j ji j
i j

f f s

 u G u G G u G G

0 1 , (15)

11

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

where ' , 1, ,
0

1 1
() ()

N C
T n i T n i n i

ji j j
i j

f

 u G u G G ,

" 1, , 2
,1

1 1

1 ()(())
2

N C
T n i n i

n iji j
i j

f s

 u G G , and ,n is lies between 1,T n i
j

u G

and ,T n i
ju G .

By the Taylor expansion and (6),
' , 1

0
1 1 1

()[((()) (()))]
N C L

T n i n T n T
ji j kj k i k i

i j k
f u g g

 u G w x w x

' , ' " 2
, ,

1 1 1 1

1()[(())() ()(())]
2

N C L L
T n i n T n T n T

k i nji j kj k i k i kj k i
i j k k

f u g u g s

 u G w x w x w x

2

2
1

1 L
n
k

k

 w , (16)

where ' , " 2
, ,2

1 1 1

1= () ()(())
2

L N C
T n i n T

k i nji j kj k i
k i j

f u g s

 u G w x , and , ,k i ns lies

between 1()n T
k i
w x and ()n T

k iw x .
By (15) and (16),

21

2 1
1

1() ()
L

n n n
k

k
E E

 V V w . (17)

As (15),U is fixed and the triangle inequality,
2,

1 2
1 1

1
2

N C
T n i
j

i j
c

 u φ

22
2 111 1 1

1 (max)
2

N C L
n

j kj Ci j k
c c

 u w

22
2 1 1 1

1= (max)
2

L
n

j kj C k
c NCc

u w

2

3
1

=
L

n
k

k
c

 w , (18)

where 2
3 2 1 1

1 (max)
2 jj C

c c NCc

 u .

By assumption (A1) and (14),
22"

2 2 1 11 1 1

1 max sup () max
2

L N C
n

j i kj C i Ns Rk i j
c g s

 u x w

10

Convergence Analysis of ...

2' 2

1 1
(sup () max)

L
n

i ki Ns R k
g s

 x w

2

1
1

L
n
k

k
c

 w ,

where
' 2

1 1
(sup () max)ii Ns R

c g s

 x , and , , (1, 2, ,)k i ns k L lies between
1()n T

k i
w x and ()n T

k iw x .

By the expression of ()jif s and assumption (A1), it is easily known that
' "

2 2() , () , 1, 2, , , 1, 2, , , ,ji jif s c f s c i N j C s R

where
' ' 2 "

2 max{sup (()) () , sup (()) (()) ()}ji ji
s R s R

c f s t f s f s f s t f s

 .

The following lemma is the same as Theorem 14.1.5 [7], therefore we only
list it below without proof.
Lemma 2. [7] Let : (, 1)n mF R R n m be continuous on a bound-
ed closed region nR , and 0 { : () 0}F z z be a finite set. Let
{ }k z be a sequence satisfying

(1) lim () 0k

k
F

z ,

(2) 1lim 0k k

k

 z z ,

then, there exists a *
0z such that

*lim k

k
z z .

Next, the proofs for (7)-(10) are successively presented as follows.
Proof for (7).
By (2) and the Taylor expansion, we have

1() ()n nE E V V

1, ,

1 1
[() ()]

N C
T n i T n i

ji j ji j
i j

f f

 u G u G

' , 1, , " 1, , 2
,

1 1

1[() () ()(())]
2

N C
T n i T n i n i T n i n i

n iji j j ji j
i j

f f s

 u G u G G u G G

0 1 , (15)

11

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

where ' , 1, ,
0

1 1
() ()

N C
T n i T n i n i

ji j j
i j

f

 u G u G G ,

" 1, , 2
,1

1 1

1 ()(())
2

N C
T n i n i

n iji j
i j

f s

 u G G , and ,n is lies between 1,T n i
j

u G

and ,T n i
ju G .

By the Taylor expansion and (6),
' , 1

0
1 1 1

()[((()) (()))]
N C L

T n i n T n T
ji j kj k i k i

i j k
f u g g

 u G w x w x

' , ' " 2
, ,

1 1 1 1

1()[(())() ()(())]
2

N C L L
T n i n T n T n T

k i nji j kj k i k i kj k i
i j k k

f u g u g s

 u G w x w x w x

2

2
1

1 L
n
k

k

 w , (16)

where ' , " 2
, ,2

1 1 1

1= () ()(())
2

L N C
T n i n T

k i nji j kj k i
k i j

f u g s

 u G w x , and , ,k i ns lies

between 1()n T
k i
w x and ()n T

k iw x .
By (15) and (16),

21

2 1
1

1() ()
L

n n n
k

k
E E

 V V w . (17)

As (15),U is fixed and the triangle inequality,
2,

1 2
1 1

1
2

N C
T n i
j

i j
c

 u φ

22
2 111 1 1

1 (max)
2

N C L
n

j kj Ci j k
c c

 u w

22
2 1 1 1

1= (max)
2

L
n

j kj C k
c NCc

u w

2

3
1

=
L

n
k

k
c

 w , (18)

where 2
3 2 1 1

1 (max)
2 jj C

c c NCc

 u .

By assumption (A1) and (14),
22"

2 2 1 11 1 1

1 max sup () max
2

L N C
n

j i kj C i Ns Rk i j
c g s

 u x w

12

Convergence Analysis of ...

22"
2 1 1 1

1 max sup () max
2

L
n

j i kj C i Ns R k
NCc g s

 u x w

2

4
1

=
L

n
k

k
c

 w , (19)

where
2"

4 2 1 1

1 max sup () max
2 j ij C i Ns R

c NCc g s

 u x .

Therefore, by (17), (18) and (19)
1() ()n nE E V V

2 2 2

4 3
1 1 1

1 L L L
n n n
k k k

k k k
c c

 w w w

2

5
1

1()
L

n
k

k
c

 w

2

1
=

L
n
k

k

 w , (20)

where 5 3 4c c c ， 5
1 c

 . Set

5

10
c

 , (21)

then, 1() ()n nE E V V . The monotonicity is proved.
Proof for (8).
For any 0,1, 2,n , () 0nE V . Then, by (7), the sequence { ()}nE V
monotonously decreases. Therefore, there exists 0E such that

*lim ()n

n
E E

V .

Proof for (9).
By (20), we obtain

21

1
() ()

L
n n n

k
k

E E

 V V w

2 21 1

1 1
()

L L
n n n

k k
k k

E

 V w w

20

0 1
()

n L
i
k

i k
E

 V w .

For any 0n , we have () 0nE V . Therefore,
2 0

0 1
()

n L
i
k

i k
E

 w V .

13

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

By (3), (4) and (6), taking n , and changing indexes,
2 22 0

0 1 0
() ()

L
n n
k

n k n
E E

 Vw V V .

Then, we have lim () 0n

n
E

V V . The weak convergence is proved.

Proof for (10).
By (3)-(6),

1 = = ()n n n nE VV V V V .
Thus, using (9), we get

1lim =0n n

n

V V .

By (A2), the conditions of lemma 2 are valid. Therefore, there exists

0
 V satisfying

*lim n

n
V V .The strong convergence is proved.

5 Numerical experiment

The MNIST database of handwritten digits contains 60,000 training samples
and 10,000 testing samples. Each digital image has been normalized to an
image 28×28 pixels, and expanded as a 784×1 vector. The elements of these
digital vectors are the integer numbers between 0-255.

According to the property of MNIST, we construct a network model
whose structure is set to be 784-128-10. The learning rate is selected as a con-
stant 0.0007. The activation functions of hidden and output layers are with the

common sigmoid function
1()

1 xg x
e

 and the linear function, respec-

tively. The initial weights are randomly assigned in the interval [1,1] . The
stop criteria are set to be: 1,000 training epochs or the error below 0.01.

Figure 1 and Figure 2 display the classification ability of the USUA on
training and testing samples. To show the details clearly, the accuracies are
recorded for each training epoch. We observe that the USUA has the similar
performance on both training and testing samples. In addition, the two curves
drastically increase in the early training stage and then maintain with a stable
status.

In Figure 3, it shows the error values of each training epoch. Correspond-
ing to the training performance in Figure 2, the errors sharply decrease in the
early training epochs, and the approach the minimum. This effectively verifies
the monotonicity of error function which is proved in Theorem 1.

For the last Figure 4, the norms of the gradient of error function with re-
spect to weight vectors have been graphed along with epochs. Although the

12

Convergence Analysis of ...

22"
2 1 1 1

1 max sup () max
2

L
n

j i kj C i Ns R k
NCc g s

 u x w

2

4
1

=
L

n
k

k
c

 w , (19)

where
2"

4 2 1 1

1 max sup () max
2 j ij C i Ns R

c NCc g s

 u x .

Therefore, by (17), (18) and (19)
1() ()n nE E V V

2 2 2

4 3
1 1 1

1 L L L
n n n
k k k

k k k
c c

 w w w

2

5
1

1()
L

n
k

k
c

 w

2

1
=

L
n
k

k

 w , (20)

where 5 3 4c c c ， 5
1 c

 . Set

5

10
c

 , (21)

then, 1() ()n nE E V V . The monotonicity is proved.
Proof for (8).
For any 0,1, 2,n , () 0nE V . Then, by (7), the sequence { ()}nE V
monotonously decreases. Therefore, there exists 0E such that

*lim ()n

n
E E

V .

Proof for (9).
By (20), we obtain

21

1
() ()

L
n n n

k
k

E E

 V V w

2 21 1

1 1
()

L L
n n n

k k
k k

E

 V w w

20

0 1
()

n L
i
k

i k
E

 V w .

For any 0n , we have () 0nE V . Therefore,
2 0

0 1
()

n L
i
k

i k
E

 w V .

13

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

By (3), (4) and (6), taking n , and changing indexes,
2 22 0

0 1 0
() ()

L
n n
k

n k n
E E

 Vw V V .

Then, we have lim () 0n

n
E

V V . The weak convergence is proved.

Proof for (10).
By (3)-(6),

1 = = ()n n n nE VV V V V .
Thus, using (9), we get

1lim =0n n

n

V V .

By (A2), the conditions of lemma 2 are valid. Therefore, there exists

0
 V satisfying

*lim n

n
V V .The strong convergence is proved.

5 Numerical experiment

The MNIST database of handwritten digits contains 60,000 training samples
and 10,000 testing samples. Each digital image has been normalized to an
image 28×28 pixels, and expanded as a 784×1 vector. The elements of these
digital vectors are the integer numbers between 0-255.

According to the property of MNIST, we construct a network model
whose structure is set to be 784-128-10. The learning rate is selected as a con-
stant 0.0007. The activation functions of hidden and output layers are with the

common sigmoid function
1()

1 xg x
e

 and the linear function, respec-

tively. The initial weights are randomly assigned in the interval [1,1] . The
stop criteria are set to be: 1,000 training epochs or the error below 0.01.

Figure 1 and Figure 2 display the classification ability of the USUA on
training and testing samples. To show the details clearly, the accuracies are
recorded for each training epoch. We observe that the USUA has the similar
performance on both training and testing samples. In addition, the two curves
drastically increase in the early training stage and then maintain with a stable
status.

In Figure 3, it shows the error values of each training epoch. Correspond-
ing to the training performance in Figure 2, the errors sharply decrease in the
early training epochs, and the approach the minimum. This effectively verifies
the monotonicity of error function which is proved in Theorem 1.

For the last Figure 4, the norms of the gradient of error function with re-
spect to weight vectors have been graphed along with epochs. Although the

14

Convergence Analysis of ...

curve shows the oscillation behavior in the training process, it still demon-
strates that the norms tend to small values near zero along with the increasing
epochs. This then illustrates the proved weak convergence of USUA in Theo-
rem 1.

Figure 1. The curve of training accuracy Figure 2. The curve of testing
 accuracy

Figure 3. The curve of error function Figure 4. The norms of the gradient

of error function with respect
to weight vectors

6 Conclusion

In this paper, we mainly rigorously prove the theoretical results of USUA
proposed by Yu et al.[5], including the monotonicity of error function, the
weak and strong convergence. The error function monotonously decreases in
the training procedure. The weak and strong convergence indicate that the
gradient of the error function with respect to weights tends to zero and the

15

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

weight sequence goes to a fixed point when the iterations approach positive
infinity, respectively. Numerical experiment on the MNIST database of
handwritten digits support these theoretical results.

Acknowledgments

The authors wish to thank the anonymous reviewers for careful error proofing
of the manuscript and many insightful comments and suggestions which
greatly improved this work.

This project was supported in part by the National Natural Science Foun-
dation of China (No. 61305075, 61173103, 61572099, 61320106008,
91230103), the China Postdoctoral Science Foundation (No. 2012M520624),
Natural Science Foundation of Shandong Province (No. ZR2013FQ004,
ZR2013DM015), the Specialized Research Fund for the Doctoral Program of
Higher Education of China (No. 20130133120014) and the Fundamental Re-
search Funds for the Central Universities (No. 15CX05053A, 15CX08011A).

References

1. Werbos, P. J., 1974, Beyond regression: new tools for prediction and analysis in
the behavioral sciences, Ph.D. thesis, Harvard University, Cambridge, MA

2. Rumelhart D. E., Hinton G. E., Williams R. J., 1986, Learning representations
by back-propagating errors, Nature, Vol. 323, pp. 533-536

3. J.H. Goodband, O.C.L. Haas, J.A. Mills, 2008, A comparison of neural network
approaches for on-line prediction in IGRT, Medical Physics, Vol. 35, No. 3, pp.
1113–1122

4. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006, Extreme learning machine: theory
and applications, Neurocomputing, Vol. 70, No. 1-3, pp. 489-501

5. D. Yu and L. Deng, 2012, Efficient and effective algorithms for training single-
hidden-layer neural networks, Pattern Recognition Letters, Vol. 33, No. 5, pp.
554–558

6. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998, Gradient-based learning ap-
plied to document recognition, Proceedings of the IEEE, Vol. 86, No. 11, pp.
2278-2324

7. Y. Yuan, W. Sun, 2001, Optimization Theory and Methods, Science Press, Bei-
jing

14

Convergence Analysis of ...

curve shows the oscillation behavior in the training process, it still demon-
strates that the norms tend to small values near zero along with the increasing
epochs. This then illustrates the proved weak convergence of USUA in Theo-
rem 1.

Figure 1. The curve of training accuracy Figure 2. The curve of testing
 accuracy

Figure 3. The curve of error function Figure 4. The norms of the gradient

of error function with respect
to weight vectors

6 Conclusion

In this paper, we mainly rigorously prove the theoretical results of USUA
proposed by Yu et al.[5], including the monotonicity of error function, the
weak and strong convergence. The error function monotonously decreases in
the training procedure. The weak and strong convergence indicate that the
gradient of the error function with respect to weights tends to zero and the

15

Yusong L., Zhixun S., Bingjie Z., Xiaoling G., Zhaoyang S.

weight sequence goes to a fixed point when the iterations approach positive
infinity, respectively. Numerical experiment on the MNIST database of
handwritten digits support these theoretical results.

Acknowledgments

The authors wish to thank the anonymous reviewers for careful error proofing
of the manuscript and many insightful comments and suggestions which
greatly improved this work.

This project was supported in part by the National Natural Science Foun-
dation of China (No. 61305075, 61173103, 61572099, 61320106008,
91230103), the China Postdoctoral Science Foundation (No. 2012M520624),
Natural Science Foundation of Shandong Province (No. ZR2013FQ004,
ZR2013DM015), the Specialized Research Fund for the Doctoral Program of
Higher Education of China (No. 20130133120014) and the Fundamental Re-
search Funds for the Central Universities (No. 15CX05053A, 15CX08011A).

References

1. Werbos, P. J., 1974, Beyond regression: new tools for prediction and analysis in
the behavioral sciences, Ph.D. thesis, Harvard University, Cambridge, MA

2. Rumelhart D. E., Hinton G. E., Williams R. J., 1986, Learning representations
by back-propagating errors, Nature, Vol. 323, pp. 533-536

3. J.H. Goodband, O.C.L. Haas, J.A. Mills, 2008, A comparison of neural network
approaches for on-line prediction in IGRT, Medical Physics, Vol. 35, No. 3, pp.
1113–1122

4. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006, Extreme learning machine: theory
and applications, Neurocomputing, Vol. 70, No. 1-3, pp. 489-501

5. D. Yu and L. Deng, 2012, Efficient and effective algorithms for training single-
hidden-layer neural networks, Pattern Recognition Letters, Vol. 33, No. 5, pp.
554–558

6. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998, Gradient-based learning ap-
plied to document recognition, Proceedings of the IEEE, Vol. 86, No. 11, pp.
2278-2324

7. Y. Yuan, W. Sun, 2001, Optimization Theory and Methods, Science Press, Bei-
jing

17

THE INTERNET OF THINGS:
TECHNOLOGICAL AND SOCIAL ASPECTS

Grzegorz Sowa, Alina Marchlewska
IT Institute, University of Social Sciences, Łódź, Poland

g22sowa@gmail.com, amarchlewska@spoleczna.pl

Abstract
The basic idea of is the Internet of Things is presence around us of a variety of
things – such as RFID tags, sensors, actuators, mobile phones, etc. – which are
able to interact with each other and cooperate with their neighbors to reach
common goals. Semantic oriented IoT visions have also been proposed. The
number of items involved in the future Internet is destined to become extremely
high. Therefore, issues pertaining how to represent, store, interconnect, search,
and organize information generated by the IoT will become very challenging. In
this context, semantic technologies will play a key role. And creative
approaches to visualizing data – humans are far better than computers at seeing
patterns –frequently prove integral to the process of creating knowledge. From
a privacy perspective, IoT is challenging because it operates in private settings,
like homes, and presents an attack target that is harder to secure.

Key words: Internet of Things, RFID systems, Big Data, privacy, user interface

1 Introduction

The development of information technology has brought about universal
information access and measurements. This can be explained by way of
a simple example: the measurement of time. We often continue to wear
watches; clocks hang on the wall largely for decorative purposes. Yet time is
displayed on mobile phones as a basic non-core function. And it is also dis-
played on electric ovens, microwaves, computer screens, television screens,
television decoders, weather stations, in the car – wherever we look, we will
see the current time. The everyday items that surround us have functions that
cross over, and they are driven by electronic devices of a level of complexity
similar to that of computers. The items are often connected to external net-
works – even a simple weather station may be synchronising with a central
clock somewhere in Europe. And of course computer-smartphone-tablets
make automatic updates not only of the date and time but of their operating
systems or anti-virus protection.

17

THE INTERNET OF THINGS:
TECHNOLOGICAL AND SOCIAL ASPECTS

Grzegorz Sowa, Alina Marchlewska
IT Institute, University of Social Sciences, Łódź, Poland

g22sowa@gmail.com, amarchlewska@spoleczna.pl

Abstract
The basic idea of is the Internet of Things is presence around us of a variety of
things – such as RFID tags, sensors, actuators, mobile phones, etc. – which are
able to interact with each other and cooperate with their neighbors to reach
common goals. Semantic oriented IoT visions have also been proposed. The
number of items involved in the future Internet is destined to become extremely
high. Therefore, issues pertaining how to represent, store, interconnect, search,
and organize information generated by the IoT will become very challenging. In
this context, semantic technologies will play a key role. And creative
approaches to visualizing data – humans are far better than computers at seeing
patterns –frequently prove integral to the process of creating knowledge. From
a privacy perspective, IoT is challenging because it operates in private settings,
like homes, and presents an attack target that is harder to secure.

Key words: Internet of Things, RFID systems, Big Data, privacy, user interface

1 Introduction

The development of information technology has brought about universal
information access and measurements. This can be explained by way of
a simple example: the measurement of time. We often continue to wear
watches; clocks hang on the wall largely for decorative purposes. Yet time is
displayed on mobile phones as a basic non-core function. And it is also dis-
played on electric ovens, microwaves, computer screens, television screens,
television decoders, weather stations, in the car – wherever we look, we will
see the current time. The everyday items that surround us have functions that
cross over, and they are driven by electronic devices of a level of complexity
similar to that of computers. The items are often connected to external net-
works – even a simple weather station may be synchronising with a central
clock somewhere in Europe. And of course computer-smartphone-tablets
make automatic updates not only of the date and time but of their operating
systems or anti-virus protection.

18

The Internet of Things: Technological and ...

Another noteworthy characteristic is the connection of these devices to the
internet, which enables them to communicate with each other. This creates
completely new technological potential; we are not far away from a refrigera-
tor which can let us know by mobile phone when its stock of a product has
fallen below a prescribed minimum, allowing you to make that same order in
a shop. This is what the Internet of Things looks like, and it is fast becoming
a reality. There are several features of this phenomenon that are worth a closer
look. Our starting point is with the technical solutions, which are already quite
advanced, although some standards are still to be developed. One interesting
aspect here is the problem of analysing the large amounts of data which are
a by-product of these systems - the problem of ‘big data’ takes on a new di-
mension. Another issue is that of the interface. All the devices have an inter-
face – even if it is only a standard time display. These need to be carefully
designed – and this must be done from the starting-point of the needs and
capabilities of users and not of the limitations of hardware or software which
are ever-decreasing. Today’s interface designers must be psychologists, soci-
ologists and artists and not just specialists. And lastly let us not omit to con-
sider security issues and the protection of personal data.

2 The concept of the Internet of Things

The Internet of Things (IoT) is formed as a result of the presence around us of
a variety of devices such as RFID tags, sensors, actuators and smartphones,
which when covered in a uniform addressing scheme can work together pur-
suing common tasks. Linking the sensors and control systems of the various
devices creates an opportunity to exchange information between different
platforms with a uniform standard. This brings potential for the development
of innovative systems. Such an objective is achieved via comprehensive
measurement, data analysis and information presentation, usually with the use
of cloud computing [Atzori, 2010, p.1].

3 The technology and architecture of the Internet of Things

As is the case in conventional computer networks, the Internet of Things is
built in layers. At the lowest level, that of hardware, we have firstly the meas-
uring and implementing components: RFID tags and implanting components
(actuators) associated with wireless WSN (Wireless Sensor Network) net-
works and NFC (Near Field Communication) networks. The key elements are
the ‘spims’ – self-sufficient objects whose positions can be tracked over time.
This category includes ‘smart items’ which provide wireless connectivity and
memory and that are autonomous in action [Fritzche, 2015, p. 20].

19

Sowa G., Marchlewska A.

Such equipment fulfils basic functions:
− Identification and storage of information (RFID)
− Communication (WNS)
− Information processing
− Physical communication, control and operations

A general overview of the layers of the Internet of Things can be presented

as follows:
− Application layer
− Intermediary layer (‘middleware’)
− Internet layer
− Access goals layer (‘access gateway’)
− Technology layer (‘hardware’)

The intermediary layer - ‘middleware’ - provides an interface between the

hardware and the applications. In recent years, there has been a proliferation
of service-orientated architecture (SOA), which allows the creation of applica-
tions with well-defined components. This layer is responsible for the man-
agement of devices and information, the filtering and aggregation of data,
semantic analysis, and access control.

The application layer includes various relevant solutions e.g. in the fields
of logistics, healthcare, environmental protection [Bandyopadhyay,
2011, p. 5].

The internet of the future will be very different to the one that we know to-
day. Currently, communication is generally host-to-host, and we mainly use
the network for acquisition or publication of information. However, the net-
works of the future will be built around the data itself: this assumes that both
the data and queries to it will be self-addressing and self-routable (have built-
in protocols). Such features already exist of course in the object-orientated
programming era. Research carried out by Koponen’s team suggested the
need for change in addressing practises in the Internet. They proposed replac-
ing the hierarchical DNS system into a ‘flat’ one, in which names and ad-
dresses would include everything above the IP layer; each object (‘thing’)
would have its own address and be available on the Internet. This proposal is
called DONA: Data-Orientated Network Architecture [Koponen, 2010, p. 2].
Internet Ø is spoken of differently here, in terms of a transformation of to-
day’s ‘internet devices’ in the ‘Internet of Things’. The IPSO (Internet Proto-
col for Smart Objects) was developed by this team.

A recent UN report [Botterman, 2009] states that in the coming era hu-
mans will be a minority of recipients and senders of data on the Internet; most
communication will be between smart objects. The basic concepts in the field
of the Internet of Things are the oriented network and object, but the overrid-
ing approach (semantic-orientated) focuses on meaning [Botterman, 2009, p.

18

The Internet of Things: Technological and ...

Another noteworthy characteristic is the connection of these devices to the
internet, which enables them to communicate with each other. This creates
completely new technological potential; we are not far away from a refrigera-
tor which can let us know by mobile phone when its stock of a product has
fallen below a prescribed minimum, allowing you to make that same order in
a shop. This is what the Internet of Things looks like, and it is fast becoming
a reality. There are several features of this phenomenon that are worth a closer
look. Our starting point is with the technical solutions, which are already quite
advanced, although some standards are still to be developed. One interesting
aspect here is the problem of analysing the large amounts of data which are
a by-product of these systems - the problem of ‘big data’ takes on a new di-
mension. Another issue is that of the interface. All the devices have an inter-
face – even if it is only a standard time display. These need to be carefully
designed – and this must be done from the starting-point of the needs and
capabilities of users and not of the limitations of hardware or software which
are ever-decreasing. Today’s interface designers must be psychologists, soci-
ologists and artists and not just specialists. And lastly let us not omit to con-
sider security issues and the protection of personal data.

2 The concept of the Internet of Things

The Internet of Things (IoT) is formed as a result of the presence around us of
a variety of devices such as RFID tags, sensors, actuators and smartphones,
which when covered in a uniform addressing scheme can work together pur-
suing common tasks. Linking the sensors and control systems of the various
devices creates an opportunity to exchange information between different
platforms with a uniform standard. This brings potential for the development
of innovative systems. Such an objective is achieved via comprehensive
measurement, data analysis and information presentation, usually with the use
of cloud computing [Atzori, 2010, p.1].

3 The technology and architecture of the Internet of Things

As is the case in conventional computer networks, the Internet of Things is
built in layers. At the lowest level, that of hardware, we have firstly the meas-
uring and implementing components: RFID tags and implanting components
(actuators) associated with wireless WSN (Wireless Sensor Network) net-
works and NFC (Near Field Communication) networks. The key elements are
the ‘spims’ – self-sufficient objects whose positions can be tracked over time.
This category includes ‘smart items’ which provide wireless connectivity and
memory and that are autonomous in action [Fritzche, 2015, p. 20].

19

Sowa G., Marchlewska A.

Such equipment fulfils basic functions:
− Identification and storage of information (RFID)
− Communication (WNS)
− Information processing
− Physical communication, control and operations

A general overview of the layers of the Internet of Things can be presented

as follows:
− Application layer
− Intermediary layer (‘middleware’)
− Internet layer
− Access goals layer (‘access gateway’)
− Technology layer (‘hardware’)

The intermediary layer - ‘middleware’ - provides an interface between the

hardware and the applications. In recent years, there has been a proliferation
of service-orientated architecture (SOA), which allows the creation of applica-
tions with well-defined components. This layer is responsible for the man-
agement of devices and information, the filtering and aggregation of data,
semantic analysis, and access control.

The application layer includes various relevant solutions e.g. in the fields
of logistics, healthcare, environmental protection [Bandyopadhyay,
2011, p. 5].

The internet of the future will be very different to the one that we know to-
day. Currently, communication is generally host-to-host, and we mainly use
the network for acquisition or publication of information. However, the net-
works of the future will be built around the data itself: this assumes that both
the data and queries to it will be self-addressing and self-routable (have built-
in protocols). Such features already exist of course in the object-orientated
programming era. Research carried out by Koponen’s team suggested the
need for change in addressing practises in the Internet. They proposed replac-
ing the hierarchical DNS system into a ‘flat’ one, in which names and ad-
dresses would include everything above the IP layer; each object (‘thing’)
would have its own address and be available on the Internet. This proposal is
called DONA: Data-Orientated Network Architecture [Koponen, 2010, p. 2].
Internet Ø is spoken of differently here, in terms of a transformation of to-
day’s ‘internet devices’ in the ‘Internet of Things’. The IPSO (Internet Proto-
col for Smart Objects) was developed by this team.

A recent UN report [Botterman, 2009] states that in the coming era hu-
mans will be a minority of recipients and senders of data on the Internet; most
communication will be between smart objects. The basic concepts in the field
of the Internet of Things are the oriented network and object, but the overrid-
ing approach (semantic-orientated) focuses on meaning [Botterman, 2009, p.

20

The Internet of Things: Technological and ...

8]. While network and web approaches are focussed on protocols and pro-
gramming languages, the semantic approach focuses on the meaning of the
data and how the information can be represented.

The semantic layer includes [Atzori, 2010, p. 3]:
− Semantic technologies
− Inferences based on data
− Semantic environmental regulations
− Semantic middleware

Two components made possible the early applications of the Internet of

Things: the RFID - Radio Frequency Identification and the WSN - Wireless
Sensor Network. RFID is still the key technology due to technological maturi-
ty, low costs, and strong resulting support enterprises [Pang, 2013, p. 43].
Passive and active RFID chips are widely used in logistics and are gradually
replacing bar codes in commerce. WSN networks combine sensors and im-
planting components (actuators) in the network and integrate them with higher
level systems throughout the net. However it is already apparent that a wider
spectrum of technologies supporting the Internet of Things has been created:
Near Field Communications (NFC) and Wireless Sensor and Actuator Net-
works (WSAN) are now elementary components that combine the world of
things with the digital world. The development of supporting platforms such
as Wireless Identification and Sensing Platforms (WISP) is significant.

Sensor nodes transmit their data (location, temperature, movement) to the
so-called ‘sink’ – a special node that collects information. Such measurement
nodes are lightweight, inexpensive and easy to install and maintain but their
capabilities are limited. Their constituent elements are: power, processing
unit, communication and sensing element. It is possible to create a network of
thousands of sensors that gathers, processes and analyses information. The
principal relevant issues are: energy efficiency, scalability, reliability and
resistance to interference.

Sensors gather information about objects and processes and events. Tech-
nically they are transducers which convert physical signals into electronic
impulses. Sensors link the physical world to digital measurements of real pro-
cesses and events, and convert them into a form that can be stored and pro-
cessed. Placing a large number of sensors in many places brings great benefits
– from improvements in logistics to enhanced levels of safety. Sensor net-
works sometimes contain implementing components that manipulate the real
world, such as boiler switches.

There is a distinction between active sensors that are equipped with an ex-
ternal power supply, and passive ones that obtain their energy from the meas-
ured object e.g. by infrared waves. Another classification is for sensors that
are resistive, capacitive, inductive or piezoelectric.

21

Sowa G., Marchlewska A.

A comparison of technologies is presented in this table:

Table 1. Comparison between RFID systems, wireless sensor networks, and RFID
sensor networks. Source: [Atzori 2010, p. 5].

technolo-

gy
pro-

cessing
collecting of
information

communica-
tion

range
(metres) power durabil-

ity Size standard

RFID No No assymetric 10 harvested unlim-
ited

very
small

ISO 1
8000

WSN Yes Yes peer-to-peer 100 battery up to 3
yrs

small IEEE
802.15.4

RSN Yes Yes assymetric 3 harvested unlim-
ited

small none

Smart objects are those objects in our surroundings which we can identify

– address and communicate with. Examples of such objects are [Nguyen,
2015, p. 58]:

− Smart key: contains an RFID tag, so that it is possible, for example,
among other functions, to find its location

− Smart lighting: linked to a wireless controller that allows different set-
tings, such as on/off

− Smart plate: able to identify the types of meals that are placed on it and
to transmit this information to a database about the dietary behaviour of
the user

− Smart air conditioning: scans data on the number of people in a room
thus facilitating automatic temperature control

− Smart fridge: keeps track of stored products thus enabling automatic re-
ordering [The Only Fridge as Smart as You, 2015]

4 Typical applications

In transport and logistics, communications and sensors (video, sonar, radar,
induction loops and magnetometers) that enable the exchange of information
between cars, and between cars and the store, are already in common use.
They enable traffic jams and journey times to be reduced. Sensors placed
in cars and trains, and on their routes, can provide information to a collision
avoidance system, monitor the transport of hazardous materials and help
in directing vehicles (assisted driving). Each step of the logistics chain (de-
sign, purchasing, production, transportation, storage, sales, after-sales service)
can be monitored and reinforced with the help of RFID tags. Real-time visi-
bility of a company’s operations and customers can bring about more efficient

20

The Internet of Things: Technological and ...

8]. While network and web approaches are focussed on protocols and pro-
gramming languages, the semantic approach focuses on the meaning of the
data and how the information can be represented.

The semantic layer includes [Atzori, 2010, p. 3]:
− Semantic technologies
− Inferences based on data
− Semantic environmental regulations
− Semantic middleware

Two components made possible the early applications of the Internet of

Things: the RFID - Radio Frequency Identification and the WSN - Wireless
Sensor Network. RFID is still the key technology due to technological maturi-
ty, low costs, and strong resulting support enterprises [Pang, 2013, p. 43].
Passive and active RFID chips are widely used in logistics and are gradually
replacing bar codes in commerce. WSN networks combine sensors and im-
planting components (actuators) in the network and integrate them with higher
level systems throughout the net. However it is already apparent that a wider
spectrum of technologies supporting the Internet of Things has been created:
Near Field Communications (NFC) and Wireless Sensor and Actuator Net-
works (WSAN) are now elementary components that combine the world of
things with the digital world. The development of supporting platforms such
as Wireless Identification and Sensing Platforms (WISP) is significant.

Sensor nodes transmit their data (location, temperature, movement) to the
so-called ‘sink’ – a special node that collects information. Such measurement
nodes are lightweight, inexpensive and easy to install and maintain but their
capabilities are limited. Their constituent elements are: power, processing
unit, communication and sensing element. It is possible to create a network of
thousands of sensors that gathers, processes and analyses information. The
principal relevant issues are: energy efficiency, scalability, reliability and
resistance to interference.

Sensors gather information about objects and processes and events. Tech-
nically they are transducers which convert physical signals into electronic
impulses. Sensors link the physical world to digital measurements of real pro-
cesses and events, and convert them into a form that can be stored and pro-
cessed. Placing a large number of sensors in many places brings great benefits
– from improvements in logistics to enhanced levels of safety. Sensor net-
works sometimes contain implementing components that manipulate the real
world, such as boiler switches.

There is a distinction between active sensors that are equipped with an ex-
ternal power supply, and passive ones that obtain their energy from the meas-
ured object e.g. by infrared waves. Another classification is for sensors that
are resistive, capacitive, inductive or piezoelectric.

21

Sowa G., Marchlewska A.

A comparison of technologies is presented in this table:

Table 1. Comparison between RFID systems, wireless sensor networks, and RFID
sensor networks. Source: [Atzori 2010, p. 5].

technolo-

gy
pro-

cessing
collecting of
information

communica-
tion

range
(metres) power durabil-

ity Size standard

RFID No No assymetric 10 harvested unlim-
ited

very
small

ISO 1
8000

WSN Yes Yes peer-to-peer 100 battery up to 3
yrs

small IEEE
802.15.4

RSN Yes Yes assymetric 3 harvested unlim-
ited

small none

Smart objects are those objects in our surroundings which we can identify

– address and communicate with. Examples of such objects are [Nguyen,
2015, p. 58]:

− Smart key: contains an RFID tag, so that it is possible, for example,
among other functions, to find its location

− Smart lighting: linked to a wireless controller that allows different set-
tings, such as on/off

− Smart plate: able to identify the types of meals that are placed on it and
to transmit this information to a database about the dietary behaviour of
the user

− Smart air conditioning: scans data on the number of people in a room
thus facilitating automatic temperature control

− Smart fridge: keeps track of stored products thus enabling automatic re-
ordering [The Only Fridge as Smart as You, 2015]

4 Typical applications

In transport and logistics, communications and sensors (video, sonar, radar,
induction loops and magnetometers) that enable the exchange of information
between cars, and between cars and the store, are already in common use.
They enable traffic jams and journey times to be reduced. Sensors placed
in cars and trains, and on their routes, can provide information to a collision
avoidance system, monitor the transport of hazardous materials and help
in directing vehicles (assisted driving). Each step of the logistics chain (de-
sign, purchasing, production, transportation, storage, sales, after-sales service)
can be monitored and reinforced with the help of RFID tags. Real-time visi-
bility of a company’s operations and customers can bring about more efficient

22

The Internet of Things: Technological and ...

supply chain management. It is possible to determine the location of goods
being transported, their status, time of delivery, and any delays or errors
[Xiao, 2011, p. 4].

An example within the field of environmental monitoring would be the
tracking of perishable food goods at every stage (collection, processing, trans-
portation, storage and consumption) to ensure supply chain efficiency. Tem-
perature and humidity can be monitored/controlled at every stage. Another
important application is tracking of the status of major engineering structures
such as bridges or pipelines, which facilitates their maintenance. The incorpo-
ration of sensors that enable fast collection of measurement data in hard to
reach places is possible during the construction phase.

In the field of healthcare, the ability to identify moving objects and people
(e.g. children) brings about significant safety improvements. Identifying pa-
tients prevents confusion and provides an up-to-date treatment record. Spe-
cialised indicators of temperature, pressure and breathing can be used to
monitor patients and, in combination with wireless networks, provide infor-
mation about their health status in real time. This information can be dis-
played where it is needed, reducing the number of medical errors. Most of the
sensors used in medicine are placed on the bodies of patients and it is possible
to use them in patients’ own homes, allowing them a safe life under medical
supervision.

Recently, attention has been focussed on a rather startling issue. The aim
of protecting individuals’ privacy is straightforward; rather murkier is the use
of so-called persuasion technologies which shape correct behaviour (from the
point of view of, for example, patient care or the environment [Fogg, 2009].
A simple example of such a technology is already prevalent; beeping that
reminds us of the need to fasten seat-belts in cars or dashboard display of
information about current fuel consumption. The idea here is to influence the
behaviour of users (‘educating them’) without compulsion or forcing them
to do anything. Another example, and an amusing one, is a doll which be-
haves like a baby and demands constant attention in order to discourage teens
from early parenthood [Fogg, 2009, str. 4].

5 The Internet of Things and Big Data

A problem specific to the Internet of Things is the huge amount of data col-
lected by different measuring devices. Such data collection and, particularly,
sound interpretation of the data is no longer possible using traditional tools –
we are dealing with the issue of ‘Big Data’. The growth in data has been un-
imaginable (in 2012 data from sensors was ten times greater in volume than
total Internet traffic in 2000 [Richards, 2013, p. 1]).

23

Sowa G., Marchlewska A.

However, this increase in the amount of collected and processed data is on-
ly an external symptom. More significant is the change in approaches to the
calculation of results. Traditional experimental science is based around con-
trolled experiments; current approaches are about recognizing patterns within
chaotic incoming data and seeking to understand them. This approach is re-
ferred to as ‘data dredging’. In other words, we make the assumption that
there is information lying within the data, even if we cannot yet understand it.
Counter-intuitively, an active role for human operators here is often critical.
‘A creative approach to visualising data – people are much better at pattern
recognition than computers – often proves to be crucial in the creation of
knowledge’ [Shaw, 2014 p. 30].

Examples of meaningful discoveries of completely non-obvious patterns of
behaviour have been given e.g. the deduction that a woman is pregnant based
on the type of deodorant she purchases.

There is an interesting analogy here to another field of ‘big data’ – that of
the analysis of social media. ‘The huge amount of information created
by Internet users offers new potential for social analysis. The tools for analys-
ing this data are still just beginning to be developed. Tools for monitoring
social networking sites are already a major source of marketing information.
However, we are dealing with a form of digital divide; only the reviews of
customers who are online matter. From the standpoint of social marketing
that’s simply an issue for commerce, but unrepresentative social research (e.g.
electoral polling) is a political problem. The issue is of course well-known
and it has been noticed for a long time that, for example, telephone users are
not a good representative sample. Yet these days the temptation to limit one-
self to analysing more easily available digital information is even greater.’
[Sowa, 2012, p. 13]

6 Protecting privacy in the era of the Internet of Things

RFID tags attached/worn by users create a completely new social world.
When meeting someone we can automatically exchange information straight-
away, we can provide live updates to social networking data about our loca-
tion and activities. Such data can be used to communicate with other users or
be saved as a digital diary. Of course, access to such information should be
restricted. There are already sophisticated algorithms in practise which allow,
for example, the identification of a person based on her behaviour patterns:
how she moves, how she uses a mouse, etc. [Ziegler, 2015, p. 102].

Another example of an application is in security. We can find lost objects;
a user can also be kept informed when an object (e.g. a valuable painting)
changes its usual position.

22

The Internet of Things: Technological and ...

supply chain management. It is possible to determine the location of goods
being transported, their status, time of delivery, and any delays or errors
[Xiao, 2011, p. 4].

An example within the field of environmental monitoring would be the
tracking of perishable food goods at every stage (collection, processing, trans-
portation, storage and consumption) to ensure supply chain efficiency. Tem-
perature and humidity can be monitored/controlled at every stage. Another
important application is tracking of the status of major engineering structures
such as bridges or pipelines, which facilitates their maintenance. The incorpo-
ration of sensors that enable fast collection of measurement data in hard to
reach places is possible during the construction phase.

In the field of healthcare, the ability to identify moving objects and people
(e.g. children) brings about significant safety improvements. Identifying pa-
tients prevents confusion and provides an up-to-date treatment record. Spe-
cialised indicators of temperature, pressure and breathing can be used to
monitor patients and, in combination with wireless networks, provide infor-
mation about their health status in real time. This information can be dis-
played where it is needed, reducing the number of medical errors. Most of the
sensors used in medicine are placed on the bodies of patients and it is possible
to use them in patients’ own homes, allowing them a safe life under medical
supervision.

Recently, attention has been focussed on a rather startling issue. The aim
of protecting individuals’ privacy is straightforward; rather murkier is the use
of so-called persuasion technologies which shape correct behaviour (from the
point of view of, for example, patient care or the environment [Fogg, 2009].
A simple example of such a technology is already prevalent; beeping that
reminds us of the need to fasten seat-belts in cars or dashboard display of
information about current fuel consumption. The idea here is to influence the
behaviour of users (‘educating them’) without compulsion or forcing them
to do anything. Another example, and an amusing one, is a doll which be-
haves like a baby and demands constant attention in order to discourage teens
from early parenthood [Fogg, 2009, str. 4].

5 The Internet of Things and Big Data

A problem specific to the Internet of Things is the huge amount of data col-
lected by different measuring devices. Such data collection and, particularly,
sound interpretation of the data is no longer possible using traditional tools –
we are dealing with the issue of ‘Big Data’. The growth in data has been un-
imaginable (in 2012 data from sensors was ten times greater in volume than
total Internet traffic in 2000 [Richards, 2013, p. 1]).

23

Sowa G., Marchlewska A.

However, this increase in the amount of collected and processed data is on-
ly an external symptom. More significant is the change in approaches to the
calculation of results. Traditional experimental science is based around con-
trolled experiments; current approaches are about recognizing patterns within
chaotic incoming data and seeking to understand them. This approach is re-
ferred to as ‘data dredging’. In other words, we make the assumption that
there is information lying within the data, even if we cannot yet understand it.
Counter-intuitively, an active role for human operators here is often critical.
‘A creative approach to visualising data – people are much better at pattern
recognition than computers – often proves to be crucial in the creation of
knowledge’ [Shaw, 2014 p. 30].

Examples of meaningful discoveries of completely non-obvious patterns of
behaviour have been given e.g. the deduction that a woman is pregnant based
on the type of deodorant she purchases.

There is an interesting analogy here to another field of ‘big data’ – that of
the analysis of social media. ‘The huge amount of information created
by Internet users offers new potential for social analysis. The tools for analys-
ing this data are still just beginning to be developed. Tools for monitoring
social networking sites are already a major source of marketing information.
However, we are dealing with a form of digital divide; only the reviews of
customers who are online matter. From the standpoint of social marketing
that’s simply an issue for commerce, but unrepresentative social research (e.g.
electoral polling) is a political problem. The issue is of course well-known
and it has been noticed for a long time that, for example, telephone users are
not a good representative sample. Yet these days the temptation to limit one-
self to analysing more easily available digital information is even greater.’
[Sowa, 2012, p. 13]

6 Protecting privacy in the era of the Internet of Things

RFID tags attached/worn by users create a completely new social world.
When meeting someone we can automatically exchange information straight-
away, we can provide live updates to social networking data about our loca-
tion and activities. Such data can be used to communicate with other users or
be saved as a digital diary. Of course, access to such information should be
restricted. There are already sophisticated algorithms in practise which allow,
for example, the identification of a person based on her behaviour patterns:
how she moves, how she uses a mouse, etc. [Ziegler, 2015, p. 102].

Another example of an application is in security. We can find lost objects;
a user can also be kept informed when an object (e.g. a valuable painting)
changes its usual position.

24

The Internet of Things: Technological and ...

Unfortunately, the Internet of Things is extremely sensitive to hacker at-
tack [Atzori, 2010, p. 2]. Firstly, most of its components are inactive most of
the time; they are also readily physically accessible. Wireless communication
is easy to wiretap and most of the hardware components have little computing
capability and so cannot effectively use sophisticated programming methods
as a defence. Authentication is difficult – that requires infrastructure and serv-
ers that exchange information – it is hard to imagine it in place for RFID tags
at present. Similarly, it is difficult to control for accurate data integrity. Sever-
al solutions have been proposed, based generally on the principle of a hierar-
chy of nodes, with those at higher levels treated as normal Internet nodes and
made subject to normal authentication procedures.

Privacy and data protection are currently at the forefront of attention, and
policy is ‘privacy at the design stage’ (Privacy by design – PbD). Internet of
Things system designers are required to incorporate personal data protection
considerations as early as possible, especially in the field of smart homes, and
before the system is completely constructed [Urquart, 2016, p. 7]. What is
essential here is the time and manner in which legal regulations will be made.
This pyramid of regulatory strategies is interesting [Urquart, 2016, p. 13]:

− Self-regulation
− Forced self-regulation
− Organised self-regulation with discreet penalty
− Organised self-regulation with public penalty

And a pyramid of sanctions:

− Persuasion
− Letter of warning
− Civil trial
− Criminal trial
− Suspension of licence
− Removal of license

While learning from previous experience we are currently trying to keep

up with current regulations for the development of the technology. In October
2014 a conference in Mauritius adopted a resolution on Big Data and the In-
ternet of Things. The main recommendations were:

− Implement privacy at the design stage
− Transparency in data collection, processing and transmission
− Define the purpose of data collection
− Obtaining consent, limiting access
− Collecting only the data that is needed
− Data made available to those concerned, possible to correct and make

changes to profiles
− Data anonymity if possible

25

Sowa G., Marchlewska A.

In this day and age, the choice between safety and privacy has become
critical.

7 The interface of the Internet of Things

The prevalence in the 1980s of last-century personal computers with popular
computer applications (word processors, spreadsheets etc.) meant that literally
everyone was a potential computer user. This was a drastic contrast with an
earlier era where a very few computers were in use by professionals. This
universality of usage led to an increase in the importance of interfaces, the
development of which was as rapid as the development of the equipment it-
self; they were in fact the major component of software. Traditional interfaces
based on a keyboard and drop-down menu (still in use) were replaced largely
by GUI interfaces, where icons supplement or replace text. Still under devel-
opment are voice interfaces, and more recently interfaces based on the inter-
pretation of gestures (Gestalt User Interfaces).

In the era of the Internet of Things we make contact with new devices that
continuously measure and observe our surroundings. In the past they operated
independently (as thermostats, boilers and refrigerators), now they will be part
of the Internet, and will exchange information. Interfaces different to the
graphical user interfaces that we are used to will become necessary. Different
types of ‘responsive objects’ are being researched. One of them is the touch-
based interface TUI - Tangible User Interface [Sharlin, 2004]. Basically it is
a digital world adaption of physical contact with the driven object. But here
automation brings with it new opportunities: an object can change visually
e.g. shapes can give us information about their state, can vibrate etc.

The concept has its own history. Kurt Koffka wrote in 1935: ‘To a primi-
tive man each thing tells us what it is and what is to be done with it: fruit says:
‘Eat me’, water says ‘ Drink me’, thunder says ‘Fear me’ and a woman says
‘Love me’’. [Koffka, 1935, p. 3]

Freedom of manoeuvre (DOF – degree of freedom) is essential to interface
design and so is linking it to the controlled object. From this point of view
mouse cursor control has promising properties – its movements correspond
exactly to the movements of the cursor. But it is not suitable for steering
a model airplane, for example, moving in three-dimensional space [Sharlin,
2004, p. 2].

Intricate relationships between different systems increase the complexity
of the design. One can imagine, for example, a system which supports the care
of patients living at home detecting depression and deciding to increase light
levels, whilst another application that manages energy gauges that nothing is
moving in the house – it is empty and lights should be put out. When overly
complex devices communicate directly with each other using wireless net-

24

The Internet of Things: Technological and ...

Unfortunately, the Internet of Things is extremely sensitive to hacker at-
tack [Atzori, 2010, p. 2]. Firstly, most of its components are inactive most of
the time; they are also readily physically accessible. Wireless communication
is easy to wiretap and most of the hardware components have little computing
capability and so cannot effectively use sophisticated programming methods
as a defence. Authentication is difficult – that requires infrastructure and serv-
ers that exchange information – it is hard to imagine it in place for RFID tags
at present. Similarly, it is difficult to control for accurate data integrity. Sever-
al solutions have been proposed, based generally on the principle of a hierar-
chy of nodes, with those at higher levels treated as normal Internet nodes and
made subject to normal authentication procedures.

Privacy and data protection are currently at the forefront of attention, and
policy is ‘privacy at the design stage’ (Privacy by design – PbD). Internet of
Things system designers are required to incorporate personal data protection
considerations as early as possible, especially in the field of smart homes, and
before the system is completely constructed [Urquart, 2016, p. 7]. What is
essential here is the time and manner in which legal regulations will be made.
This pyramid of regulatory strategies is interesting [Urquart, 2016, p. 13]:

− Self-regulation
− Forced self-regulation
− Organised self-regulation with discreet penalty
− Organised self-regulation with public penalty

And a pyramid of sanctions:

− Persuasion
− Letter of warning
− Civil trial
− Criminal trial
− Suspension of licence
− Removal of license

While learning from previous experience we are currently trying to keep

up with current regulations for the development of the technology. In October
2014 a conference in Mauritius adopted a resolution on Big Data and the In-
ternet of Things. The main recommendations were:

− Implement privacy at the design stage
− Transparency in data collection, processing and transmission
− Define the purpose of data collection
− Obtaining consent, limiting access
− Collecting only the data that is needed
− Data made available to those concerned, possible to correct and make

changes to profiles
− Data anonymity if possible

25

Sowa G., Marchlewska A.

In this day and age, the choice between safety and privacy has become
critical.

7 The interface of the Internet of Things

The prevalence in the 1980s of last-century personal computers with popular
computer applications (word processors, spreadsheets etc.) meant that literally
everyone was a potential computer user. This was a drastic contrast with an
earlier era where a very few computers were in use by professionals. This
universality of usage led to an increase in the importance of interfaces, the
development of which was as rapid as the development of the equipment it-
self; they were in fact the major component of software. Traditional interfaces
based on a keyboard and drop-down menu (still in use) were replaced largely
by GUI interfaces, where icons supplement or replace text. Still under devel-
opment are voice interfaces, and more recently interfaces based on the inter-
pretation of gestures (Gestalt User Interfaces).

In the era of the Internet of Things we make contact with new devices that
continuously measure and observe our surroundings. In the past they operated
independently (as thermostats, boilers and refrigerators), now they will be part
of the Internet, and will exchange information. Interfaces different to the
graphical user interfaces that we are used to will become necessary. Different
types of ‘responsive objects’ are being researched. One of them is the touch-
based interface TUI - Tangible User Interface [Sharlin, 2004]. Basically it is
a digital world adaption of physical contact with the driven object. But here
automation brings with it new opportunities: an object can change visually
e.g. shapes can give us information about their state, can vibrate etc.

The concept has its own history. Kurt Koffka wrote in 1935: ‘To a primi-
tive man each thing tells us what it is and what is to be done with it: fruit says:
‘Eat me’, water says ‘ Drink me’, thunder says ‘Fear me’ and a woman says
‘Love me’’. [Koffka, 1935, p. 3]

Freedom of manoeuvre (DOF – degree of freedom) is essential to interface
design and so is linking it to the controlled object. From this point of view
mouse cursor control has promising properties – its movements correspond
exactly to the movements of the cursor. But it is not suitable for steering
a model airplane, for example, moving in three-dimensional space [Sharlin,
2004, p. 2].

Intricate relationships between different systems increase the complexity
of the design. One can imagine, for example, a system which supports the care
of patients living at home detecting depression and deciding to increase light
levels, whilst another application that manages energy gauges that nothing is
moving in the house – it is empty and lights should be put out. When overly
complex devices communicate directly with each other using wireless net-

26

The Internet of Things: Technological and ...

works, mistakes in print execution by a neighbouring printer are common
[Alur, 2015, p. 9].

This brings us to the idea of Cyber-Physical-Human Systems (CPHS) sys-
tems. In addition to a set of computing devices that communicate with each
other and affect the physical environment, a place for the user must be found
– for a person who must be meaningly integrated into the control loops.
A human must be able to intervene, interact with and use these systems.

The visualisation of information is an essential part of most applications
because of the need to communicate with their users. Measurements which are
not incorporated are useless. The purpose of visualisation is to provide infor-
mation drawn from raw data. They must be presented in such a way that the
user can utilise them. A simple example is the representation of real-world
objects as virtual ones that can be depicted, accessible and show their states.
Their representation can be physical or – more commonly – virtual. The basic
devices in use here are smartphones, tablets and notebooks.

8 Conclusions

The Internet of things brings with it a qualitative change for the develop-
ment of computer science. Computers are not only ubiquitous but are begin-
ning to communicate directly with each other. This creates enormous oppor-
tunities to improve our quality of life but, as usual, also poses new risks. A car
that reminds us constantly to fasten our seatbelts can be troublesome enough;
a plate that vibrates unpleasantly when we place our pork knuckle onto it
is perhaps a step too far. Maybe not everything that is technically possible
is worth pursuing.

References

1. Alur, R., Berger E., Drobnis A.W., Fix L., Fu K., Hager G. D., Lopresti D.,
Nahrstedt K., Mynattm E., Patel S., Rexford J., Stankovic J., A., Zorn B., 2015,
Systems Computing Challenges in the Internet of Things, Computer Community
Consortium, September 22

2. Atzori L., Iera A., Morabito G., 2010, The Internet of Things: A survey, Com-
puter Networks 54 (2010) 2787–2805

3. Bandyopadhyay D., 2011, Sen J., Internet of Things - Applications and Chal-
lenges in Technology and Standardization, Wireless Personal Communications,
May 2011, Volume 58, Issue 1, pp 49-69

4. Botterman M., May 2009, Internet of Things: An Early Reality of the Future
Internet, Report of the Internet of Things Workshop, Prague, Czech Republic

5. Fogg, B. J., Cuellar, G. & Danielson, D., 2009, Motivating, influencing, and per-
suading users: an introduction to captology. In A. Sears & J. A. Jacko (Eds.),

27

Sowa G., Marchlewska A.

Human-computer interaction. Fundamentals (pp. 109-122). London: CRC Press.
Taylor & Francis Group

6. Fritzsche B., 2015, Revealing the Invisible - Information Visualization in the
Internet of Things Era, Human Computer Interaction in the Internet of Things
Era, Hauptseminar Medieninformatik SoSe

7. Technical Report LMU-MI-2015-2, September, 2015 ISSN 1862-5207, 2015
8. Gershenfeld N., Krikorian R., Cohen D., 2004, The internet of things, Scientific

American 291 (4) (2004) 76–81.
9. Koffka K., 1935, Principles of Gestalt psychology, New York
10. Koponen T., Chawla M., Byung-Gon Chun, Ermolinskiy A., Kye Hyun Kim,

Shenker S., Stoica I., August 2007, A Data-Oriented (and Beyond) Network Ar-
chitecture, in: Proceedings of ACM SIGCOMM’07, Kyoto, Japan

11. Mauritius Declaration on the Internet of Things, 14 October 2014, 36th Interna-
tional Conference of Data Protection and Privacy Commissioners, Balaclava

12. Nguyen M., 2015, Designing Smart Interactions for Smart Objects, Human
Computer Interaction in the Internet of Things Era, Hauptseminar Medienin-
formatik SoSe 2015, Technical Report LMU-MI-2015-2, September, 2015 ISSN
1862-5207

13. Pang Z.,2013, Technologies and Architectures of the Internet-of-Things (IoT) for
Health and Well-being, Doctoral Thesis in Electronic and Computer Systems
KTH – Royal Institute of Technology Stockholm, Sweden

14. Richards N. M., King J. H., 2013, Three Paradoxes of Big Data, September 3,
66 STAN. L. REV. ONLINE 41

15. Rieder A., 2015, Health and Everyday Life: The Potential of Self-Monitoring in
Managing the Own Health, Human Computer Interaction in the Internet of
Things Era, Hauptseminar Medieninformatik SoSe 2015, Technical Report
LMU-MI-2015-2, September, 2015 ISSN 1862-5207

16. Sharlin E., Watson B., Kitamura Y., Kishino F., Itoh Y., 2004, On tangible user
interfaces, humans and spatiality, Personal and Ubiquitous Computing, 8(5):
338-346

17. J. Shaw., 2014, Why big data is a big deal, Harvard Magazine
18. Sowa G., Filutowicz Z., Paszkowski J., 2012, Social Media Monitoring Tools,

Computer Methods in Practice; W-wa, ISBN 978-83-60434-94-9
19. The Only Fridge as Smart as You, 2015, to Launch at CES, GE Appliances

Pressroom LAS VEGAS—January 5

26

The Internet of Things: Technological and ...

works, mistakes in print execution by a neighbouring printer are common
[Alur, 2015, p. 9].

This brings us to the idea of Cyber-Physical-Human Systems (CPHS) sys-
tems. In addition to a set of computing devices that communicate with each
other and affect the physical environment, a place for the user must be found
– for a person who must be meaningly integrated into the control loops.
A human must be able to intervene, interact with and use these systems.

The visualisation of information is an essential part of most applications
because of the need to communicate with their users. Measurements which are
not incorporated are useless. The purpose of visualisation is to provide infor-
mation drawn from raw data. They must be presented in such a way that the
user can utilise them. A simple example is the representation of real-world
objects as virtual ones that can be depicted, accessible and show their states.
Their representation can be physical or – more commonly – virtual. The basic
devices in use here are smartphones, tablets and notebooks.

8 Conclusions

The Internet of things brings with it a qualitative change for the develop-
ment of computer science. Computers are not only ubiquitous but are begin-
ning to communicate directly with each other. This creates enormous oppor-
tunities to improve our quality of life but, as usual, also poses new risks. A car
that reminds us constantly to fasten our seatbelts can be troublesome enough;
a plate that vibrates unpleasantly when we place our pork knuckle onto it
is perhaps a step too far. Maybe not everything that is technically possible
is worth pursuing.

References

1. Alur, R., Berger E., Drobnis A.W., Fix L., Fu K., Hager G. D., Lopresti D.,
Nahrstedt K., Mynattm E., Patel S., Rexford J., Stankovic J., A., Zorn B., 2015,
Systems Computing Challenges in the Internet of Things, Computer Community
Consortium, September 22

2. Atzori L., Iera A., Morabito G., 2010, The Internet of Things: A survey, Com-
puter Networks 54 (2010) 2787–2805

3. Bandyopadhyay D., 2011, Sen J., Internet of Things - Applications and Chal-
lenges in Technology and Standardization, Wireless Personal Communications,
May 2011, Volume 58, Issue 1, pp 49-69

4. Botterman M., May 2009, Internet of Things: An Early Reality of the Future
Internet, Report of the Internet of Things Workshop, Prague, Czech Republic

5. Fogg, B. J., Cuellar, G. & Danielson, D., 2009, Motivating, influencing, and per-
suading users: an introduction to captology. In A. Sears & J. A. Jacko (Eds.),

27

Sowa G., Marchlewska A.

Human-computer interaction. Fundamentals (pp. 109-122). London: CRC Press.
Taylor & Francis Group

6. Fritzsche B., 2015, Revealing the Invisible - Information Visualization in the
Internet of Things Era, Human Computer Interaction in the Internet of Things
Era, Hauptseminar Medieninformatik SoSe

7. Technical Report LMU-MI-2015-2, September, 2015 ISSN 1862-5207, 2015
8. Gershenfeld N., Krikorian R., Cohen D., 2004, The internet of things, Scientific

American 291 (4) (2004) 76–81.
9. Koffka K., 1935, Principles of Gestalt psychology, New York
10. Koponen T., Chawla M., Byung-Gon Chun, Ermolinskiy A., Kye Hyun Kim,

Shenker S., Stoica I., August 2007, A Data-Oriented (and Beyond) Network Ar-
chitecture, in: Proceedings of ACM SIGCOMM’07, Kyoto, Japan

11. Mauritius Declaration on the Internet of Things, 14 October 2014, 36th Interna-
tional Conference of Data Protection and Privacy Commissioners, Balaclava

12. Nguyen M., 2015, Designing Smart Interactions for Smart Objects, Human
Computer Interaction in the Internet of Things Era, Hauptseminar Medienin-
formatik SoSe 2015, Technical Report LMU-MI-2015-2, September, 2015 ISSN
1862-5207

13. Pang Z.,2013, Technologies and Architectures of the Internet-of-Things (IoT) for
Health and Well-being, Doctoral Thesis in Electronic and Computer Systems
KTH – Royal Institute of Technology Stockholm, Sweden

14. Richards N. M., King J. H., 2013, Three Paradoxes of Big Data, September 3,
66 STAN. L. REV. ONLINE 41

15. Rieder A., 2015, Health and Everyday Life: The Potential of Self-Monitoring in
Managing the Own Health, Human Computer Interaction in the Internet of
Things Era, Hauptseminar Medieninformatik SoSe 2015, Technical Report
LMU-MI-2015-2, September, 2015 ISSN 1862-5207

16. Sharlin E., Watson B., Kitamura Y., Kishino F., Itoh Y., 2004, On tangible user
interfaces, humans and spatiality, Personal and Ubiquitous Computing, 8(5):
338-346

17. J. Shaw., 2014, Why big data is a big deal, Harvard Magazine
18. Sowa G., Filutowicz Z., Paszkowski J., 2012, Social Media Monitoring Tools,

Computer Methods in Practice; W-wa, ISBN 978-83-60434-94-9
19. The Only Fridge as Smart as You, 2015, to Launch at CES, GE Appliances

Pressroom LAS VEGAS—January 5

29

SELECTED EXAMPLES OF APPLICATIONS OF NEW GRAPHICS
AND ANIMATION TECHNOLOGIES

Zbigniew Filutowicz, Krzysztof Przybyszewski, Józef Paszkowski

IT Institute, University of Social Sciences, Łódź, Poland
(zfilutowicz, kprzybyszewski)@spoleczna.pl

Abstract
In recent years there has been a marked increase in the competitiveness of some
very interesting (user) applications software within the field of computer
graphics and animation. This paper presents an analysis of selected examples of
the use of graphic applications software designed for professional use within
various areas of human activity, and also focusses on the potential for further
development of this software. Graphic applications software that makes use of
motion capture, performance capture, time-lapse, morphing, Augmented
Reality and the use of avatars in human-computer communication has become
increasingly popular, cheap and simple.

Key words: computer graphics, computer animation, performance capture,
human-computer communication

1 Introduction

In the past, the market for (user) applications software was monopolized by a
few leading and well-known companies. The market valued cult products, and
the data recording formats associated with them. The last decade has seen the
spread of the use of cloud computing, which allows end users to run computer
programs online in a web (internet) browser. Previously, all programs had to
be installed on one’s own computer and were run from the desktop. Since the
prices of user programs of that time were a result of the laws of supply and
demand, they differed significantly from the cost of production. It turned out
that for entry-level companies it paid to provide them on the cloud for free to
a certain extent or even completely. The phenomenon of free software, and
the movement within it known as Open Source, has been around for a long
time of course. From the year 2010 sites with online applications in the cloud
started to appear en masse, and so it was in the field of computer graphics. For
example, competitors to the cult program Microsoft Vision (acquired in 2000

29

SELECTED EXAMPLES OF APPLICATIONS OF NEW GRAPHICS
AND ANIMATION TECHNOLOGIES

Zbigniew Filutowicz, Krzysztof Przybyszewski, Józef Paszkowski

IT Institute, University of Social Sciences, Łódź, Poland
(zfilutowicz, kprzybyszewski)@spoleczna.pl

Abstract
In recent years there has been a marked increase in the competitiveness of some
very interesting (user) applications software within the field of computer
graphics and animation. This paper presents an analysis of selected examples of
the use of graphic applications software designed for professional use within
various areas of human activity, and also focusses on the potential for further
development of this software. Graphic applications software that makes use of
motion capture, performance capture, time-lapse, morphing, Augmented
Reality and the use of avatars in human-computer communication has become
increasingly popular, cheap and simple.

Key words: computer graphics, computer animation, performance capture,
human-computer communication

1 Introduction

In the past, the market for (user) applications software was monopolized by a
few leading and well-known companies. The market valued cult products, and
the data recording formats associated with them. The last decade has seen the
spread of the use of cloud computing, which allows end users to run computer
programs online in a web (internet) browser. Previously, all programs had to
be installed on one’s own computer and were run from the desktop. Since the
prices of user programs of that time were a result of the laws of supply and
demand, they differed significantly from the cost of production. It turned out
that for entry-level companies it paid to provide them on the cloud for free to
a certain extent or even completely. The phenomenon of free software, and
the movement within it known as Open Source, has been around for a long
time of course. From the year 2010 sites with online applications in the cloud
started to appear en masse, and so it was in the field of computer graphics. For
example, competitors to the cult program Microsoft Vision (acquired in 2000

30

Selected Examples of Applications of New Graphics ...

from the Shapeware Corporation) appeared in the form of online programs
such as Gliffy, Draw.io, Lucid chart and dozens of others [1].

In the last five years such has been the story of the new technologies of
human-computer communication: Kinect and Leap Motion. They allow the
control of a program in real-time by using body movements, for example by
pointing a finger rather than moving a computer mouse. Many computer tech-
nologies are descendants of much earlier technologies, for ex-ample, in films,
photography and animation. Similiarly older computer technologies influence
the development of ones that are currently popular. An example is motion
capture technology, which used to be expensive and require recording studios
and the installation of markers on moving actors. Today it is very cheap and
accessible in games consoles and computers in the form of the technologies
Kinect or Leap Motion.

This paper presents an overview of some selected applications of new
computer graphics and computer animation technologies. Also discussed are
examples of software invaluable for fast and cost-effective creation of inter-
esting applications.

2 Rotoskop stop-motion animation technology

Stop-motion animation is one technology for drawing, imaging and computer
animation. It involves displaying images at specific intervals, e.g. 24 frames
per second. The history of animation dates back to the end of the nineteenth
century and its progenitor was Léon Gaumont (1864-1946), who was awarded
a French patent for stop-motion animation in 1900. As with animations, so
with film and digital video. An example of Time-lapse stop-motion animation
is a time-lapse movie composed of many images made with, for example, a
camera. The resulting film is very impressive in that it allows one to view
phenomena imperceptible to the human eye because of their very slow pace.
In this way one can present an animation of the growth of a plant taking place
at a faster rate than in reality [8] [21].

An interesting method of stop-motion animation is rotoskop, in which
movie frames with live actors are substituted for ones that are manually drawn
by a cartoonist. A new use of rotoskop animation technology is a first full-
length animated film which is dedicated to the Dutch painter Vincent van
Gogh.

31

Filutowicz Z., Przybyszewski K., Paszkowski J.

Figure 1. Movie frame with the image of an actor hand-painted with oil paints on
canvas [13]

The director and designer – Dorota Kobiela – is Polish. The lead animation
producer is Hugh Welchman, who won an Oscar for best short animated film
with „Peter and the Wolf” in 2008. The screenplay was a collaboration by
Kobiela and Jack Dehnel, a Polish poet, translator and painter. „Twój Vin-
cent” („Loving Vincent”) will be an 80-minute film about the life of van
Gogh. It will consist of more than 56,000 frames – photographs of oil-on-
canvas paintings done in the Expressionist style characteristic of the artist
Figure 1. About 100 Polish painters, working in studios in Gdansk, Wroclaw
and Great Britain, were invited to participate by the producers. Together they
created more than 43,200 images, making 12 images for each second of film.
About 120 original paintings by van Gogh feature in the film [13].

3 Computer applications that simulate the knowledge and skills of
a painter

Research is being carried out into automating the process of painting pictures.
An inter-national team consisting of world-class scientists, engineers, pro-
grammers and art historians decided to take a challenge and see if a program
could be developed to enable a computer to simulate the skills of one of the
greatest and most innovative artists of all time - Rembrandt – and control a 3D
printer [2]. All of Rembrandt’s paintings were scanned using a 3D scanner in
order to analyse his style and to assess the thicknesses of the layers of paint he
applied. After the scanning of 346 of the artist’s works and their analysis by a
team of researchers, software with the knowledge and skills of the brilliant

30

Selected Examples of Applications of New Graphics ...

from the Shapeware Corporation) appeared in the form of online programs
such as Gliffy, Draw.io, Lucid chart and dozens of others [1].

In the last five years such has been the story of the new technologies of
human-computer communication: Kinect and Leap Motion. They allow the
control of a program in real-time by using body movements, for example by
pointing a finger rather than moving a computer mouse. Many computer tech-
nologies are descendants of much earlier technologies, for ex-ample, in films,
photography and animation. Similiarly older computer technologies influence
the development of ones that are currently popular. An example is motion
capture technology, which used to be expensive and require recording studios
and the installation of markers on moving actors. Today it is very cheap and
accessible in games consoles and computers in the form of the technologies
Kinect or Leap Motion.

This paper presents an overview of some selected applications of new
computer graphics and computer animation technologies. Also discussed are
examples of software invaluable for fast and cost-effective creation of inter-
esting applications.

2 Rotoskop stop-motion animation technology

Stop-motion animation is one technology for drawing, imaging and computer
animation. It involves displaying images at specific intervals, e.g. 24 frames
per second. The history of animation dates back to the end of the nineteenth
century and its progenitor was Léon Gaumont (1864-1946), who was awarded
a French patent for stop-motion animation in 1900. As with animations, so
with film and digital video. An example of Time-lapse stop-motion animation
is a time-lapse movie composed of many images made with, for example, a
camera. The resulting film is very impressive in that it allows one to view
phenomena imperceptible to the human eye because of their very slow pace.
In this way one can present an animation of the growth of a plant taking place
at a faster rate than in reality [8] [21].

An interesting method of stop-motion animation is rotoskop, in which
movie frames with live actors are substituted for ones that are manually drawn
by a cartoonist. A new use of rotoskop animation technology is a first full-
length animated film which is dedicated to the Dutch painter Vincent van
Gogh.

31

Filutowicz Z., Przybyszewski K., Paszkowski J.

Figure 1. Movie frame with the image of an actor hand-painted with oil paints on
canvas [13]

The director and designer – Dorota Kobiela – is Polish. The lead animation
producer is Hugh Welchman, who won an Oscar for best short animated film
with „Peter and the Wolf” in 2008. The screenplay was a collaboration by
Kobiela and Jack Dehnel, a Polish poet, translator and painter. „Twój Vin-
cent” („Loving Vincent”) will be an 80-minute film about the life of van
Gogh. It will consist of more than 56,000 frames – photographs of oil-on-
canvas paintings done in the Expressionist style characteristic of the artist
Figure 1. About 100 Polish painters, working in studios in Gdansk, Wroclaw
and Great Britain, were invited to participate by the producers. Together they
created more than 43,200 images, making 12 images for each second of film.
About 120 original paintings by van Gogh feature in the film [13].

3 Computer applications that simulate the knowledge and skills of
a painter

Research is being carried out into automating the process of painting pictures.
An inter-national team consisting of world-class scientists, engineers, pro-
grammers and art historians decided to take a challenge and see if a program
could be developed to enable a computer to simulate the skills of one of the
greatest and most innovative artists of all time - Rembrandt – and control a 3D
printer [2]. All of Rembrandt’s paintings were scanned using a 3D scanner in
order to analyse his style and to assess the thicknesses of the layers of paint he
applied. After the scanning of 346 of the artist’s works and their analysis by a
team of researchers, software with the knowledge and skills of the brilliant

32

Selected Examples of Applications of New Graphics ...

painter was developed. A significant par of Rembrandt’s work is portraits, so
the researchers focused on those in particular Figure 2.

Figure 2. 3D scan and analysis of the painter’s works [2]

Once the software was developed, a made-up portrait of the Dutch painter
was produced with a 3D printer based on a database containing information
about his original portraiture. The results of such research can be used to cre-
ate accurate reproductions, and contribute to making the achievements of the
great painter more widely known. The software created by the researchers
could also be used for commercial purposes, and then we would all be able to
order our own portrait created by a virtual seventeenth century Rembrandt for
our homes.

4 Animation techniques based on motion capture

The first type of stop-motion animation was motion capture technology, the
capture of movements of selected points of three dimensional real objects e.g.
the human body. An actor puts on a vest with markers (sensors) attached, the
movements of which are captured with a camera onto film frames Figure 3.
Markers are also attached to the face, in order to record facial expressions.
The positions of these markers on individual animation frames helps graphic
designers to create very lifelike motion-animated characters. Studio SoInter-
active is an example of a company involved in animation design based on the
technique of motion capture [9] [28].

33

Filutowicz Z., Przybyszewski K., Paszkowski J.

Figure 3. The use of markers to record the movements of points on 3D objects [9]

In 2010 there was a revolutionary change in the animation technique of
motion capture because two new technologies appeared on the market. Mi-
crosoft brought out the technology Kinect [19] and a similiar solution ap-
peared from the Leap Motion company [15]. A snap-in to a computer with
two cameras registers the movement of 3D objects. The application of these
new technologies no longer requires the use of markers because the computer
programs can detect characteristic points of the observed objects, for example
moving fingers or hands Figure 4.

Figure 4. Capturing the movement of real objects [14]

32

Selected Examples of Applications of New Graphics ...

painter was developed. A significant par of Rembrandt’s work is portraits, so
the researchers focused on those in particular Figure 2.

Figure 2. 3D scan and analysis of the painter’s works [2]

Once the software was developed, a made-up portrait of the Dutch painter
was produced with a 3D printer based on a database containing information
about his original portraiture. The results of such research can be used to cre-
ate accurate reproductions, and contribute to making the achievements of the
great painter more widely known. The software created by the researchers
could also be used for commercial purposes, and then we would all be able to
order our own portrait created by a virtual seventeenth century Rembrandt for
our homes.

4 Animation techniques based on motion capture

The first type of stop-motion animation was motion capture technology, the
capture of movements of selected points of three dimensional real objects e.g.
the human body. An actor puts on a vest with markers (sensors) attached, the
movements of which are captured with a camera onto film frames Figure 3.
Markers are also attached to the face, in order to record facial expressions.
The positions of these markers on individual animation frames helps graphic
designers to create very lifelike motion-animated characters. Studio SoInter-
active is an example of a company involved in animation design based on the
technique of motion capture [9] [28].

33

Filutowicz Z., Przybyszewski K., Paszkowski J.

Figure 3. The use of markers to record the movements of points on 3D objects [9]

In 2010 there was a revolutionary change in the animation technique of
motion capture because two new technologies appeared on the market. Mi-
crosoft brought out the technology Kinect [19] and a similiar solution ap-
peared from the Leap Motion company [15]. A snap-in to a computer with
two cameras registers the movement of 3D objects. The application of these
new technologies no longer requires the use of markers because the computer
programs can detect characteristic points of the observed objects, for example
moving fingers or hands Figure 4.

Figure 4. Capturing the movement of real objects [14]

34

Selected Examples of Applications of New Graphics ...

5 Inbetweening animation technology

Morphing technology is the simplest example of automatic animation also
known as inbetweening. It relies on software to generate graphics for interme-
diate frames. Thus we enter images, for example of a face, for two frames
which are called key frames. For both raster images the program identifies
characteristic points, such as the corners of the eyes, and on this basis deter-
mines the position of these points in the intermediate frames using a calcula-
tion algorithm. Then the filling in between the points is rendered with frag-
ments of raster graphics derived from both key frames [16].

An example of the use of morphing would be an animation that shows a
person’s face changing over the course of a lifetime. Photographs of the face
taken at various life stages are entered into the morphing program. The appli-
cations software generates intermediate frames creating an animation of the
person’s face [20].

Another example of programs with software that generates animation
frames is provided by applications for creating avatars [22] [3]. An avatar can
be animated from a drawing of any object, or from a 2D photograph of a hu-
man. Many companies providing software and services that produce various
types of avatars have appeared on the market [31]. Avatars can consist of only
part of an object, for example a head [5], or the whole object [17]. One of the
most popular programs for animation of the head, along with facial expres-
sions and lip movements, is the program CrazyTalk, currently in version 8,
from the company Reallusion [25].

Figure 5. The CrazyTalk application site, selecting an avatar’s teeth [25]

This program enables the animation of a 3D avatar head from photographs
or 2D drawings. During the automatic animation facial expression and lip
movements are added, which can articulate words that are requested with a
text or audio file (Figure 5). Such an avatar is con-trolled on the one hand

35

Filutowicz Z., Przybyszewski K., Paszkowski J.

with a dynamic behaviour program, and on the other with a script for its
speech.

There are also free sites, deserving of wider use, on which it is possible to
design video animations for your specific requirements, without any need for
programming knowledge [32] [7] [27] [6].

6 Controlling applications in real-time using body motion capture
- performance capture

Motion capture technology enables the use of natural movements of selected
points of the body in animation, which indicate where the same points will be
located in animated shapes at a given moment in time. The current develop-
ment of this technology is referred to as performance (facial motion) capture
and involves not only mapping body movements, but also scanning human
facial expressions [10]. Performance computing along with the very cheap
technologies Kinect or Leap Motion allow the capture and use of whole-body
movements to control computer programs in real time Figure 6.

Figure 6. Scanning facial expressions and transposing them on the face
of an avatar [10]

A company called Reallusion, which has been known for a long time for
its program CrazyTalk, offers among other things a program called iClone,
which allows 3D animation of a whole figure along with the head in Kinect
and Kinect Mocap plug-in technology [26].

34

Selected Examples of Applications of New Graphics ...

5 Inbetweening animation technology

Morphing technology is the simplest example of automatic animation also
known as inbetweening. It relies on software to generate graphics for interme-
diate frames. Thus we enter images, for example of a face, for two frames
which are called key frames. For both raster images the program identifies
characteristic points, such as the corners of the eyes, and on this basis deter-
mines the position of these points in the intermediate frames using a calcula-
tion algorithm. Then the filling in between the points is rendered with frag-
ments of raster graphics derived from both key frames [16].

An example of the use of morphing would be an animation that shows a
person’s face changing over the course of a lifetime. Photographs of the face
taken at various life stages are entered into the morphing program. The appli-
cations software generates intermediate frames creating an animation of the
person’s face [20].

Another example of programs with software that generates animation
frames is provided by applications for creating avatars [22] [3]. An avatar can
be animated from a drawing of any object, or from a 2D photograph of a hu-
man. Many companies providing software and services that produce various
types of avatars have appeared on the market [31]. Avatars can consist of only
part of an object, for example a head [5], or the whole object [17]. One of the
most popular programs for animation of the head, along with facial expres-
sions and lip movements, is the program CrazyTalk, currently in version 8,
from the company Reallusion [25].

Figure 5. The CrazyTalk application site, selecting an avatar’s teeth [25]

This program enables the animation of a 3D avatar head from photographs
or 2D drawings. During the automatic animation facial expression and lip
movements are added, which can articulate words that are requested with a
text or audio file (Figure 5). Such an avatar is con-trolled on the one hand

35

Filutowicz Z., Przybyszewski K., Paszkowski J.

with a dynamic behaviour program, and on the other with a script for its
speech.

There are also free sites, deserving of wider use, on which it is possible to
design video animations for your specific requirements, without any need for
programming knowledge [32] [7] [27] [6].

6 Controlling applications in real-time using body motion capture
- performance capture

Motion capture technology enables the use of natural movements of selected
points of the body in animation, which indicate where the same points will be
located in animated shapes at a given moment in time. The current develop-
ment of this technology is referred to as performance (facial motion) capture
and involves not only mapping body movements, but also scanning human
facial expressions [10]. Performance computing along with the very cheap
technologies Kinect or Leap Motion allow the capture and use of whole-body
movements to control computer programs in real time Figure 6.

Figure 6. Scanning facial expressions and transposing them on the face
of an avatar [10]

A company called Reallusion, which has been known for a long time for
its program CrazyTalk, offers among other things a program called iClone,
which allows 3D animation of a whole figure along with the head in Kinect
and Kinect Mocap plug-in technology [26].

36

Selected Examples of Applications of New Graphics ...

7 Linking computer graphics with real world images – augmented
reality

Virtual Reality is an example of the use of 3D computer graphics and has
become increasingly popular. Its popularity, even on 2D monitors, stems from
the potential of creating increasingly realistic 2D images with it, which are
deceptively reminiscent of real world images viewed through human eyes. Of
course stereoscopic viewing of 3D objects or watching 2D animations in 3D
technology makes an even greater impression. An interesting example is the
reconstruction of Jan Matejko’s painting „Battle of Grunwald” with stereo-
scopic technology Figure 7. This project was commissioned by the National
Museum in Warsaw and created by the studio Platige Image [23] [12].

An interesting idea is to combine two views – from the real world and the
virtual one – and view them on the screen at the same time. Such a solution is
called Augmented Reality (AR). A Virtual Reality (VR) view can also be
combined with another one to create an Augmented Virtuality (AV). The syn-
chronisation of these two worlds can be performed using point markers or by
reference to a geographic position. An example of the use of augmented reali-
ty are Microsoft Hololens glasses [18], which are specially tailored to this
kind of visualisation. Computer graphics can become complementary to the
real world with this technology. For example, with Hololens glasses a lineman
sees the repaired part of a sewerage system and at the same time carries out a
conversation with an expert on Skype (seeing it on a virtual screen Figure 7,
and also sees a graphic which shows which components can be loosened and
with which movements [18].

Figure 7. With Hololens glasses a lineman sees a sewage system, virtual computer
screen and an infographic [18]

37

Filutowicz Z., Przybyszewski K., Paszkowski J.

In museums virtual avatars of historical figures may appear as guides.
Strong interest in using augmented reality is shown in web and traditional
marketing, for example to create a virtual fitting room [4].

8 Facial recognition and identification of facial expressions

The development of these technologies in recent times is linked not only with
animation, but also with facial recognition. The programmers of Facebook
have built software which recognises faces with 97.25% accuracy, which ap-
proaches the capabilities of a human. The program works regardless of pre-
vailing light conditions or the angle of inclination of the head [30].

In 2016, Amazon filed an application for a patent that describes a shopping
method which will make use of facial recognition and facial expressions to
authorise transactions [24]. After accepting a transaction in an online store,
the site launches a camera application and performs a two-step verification
process. The first, of course, is facial recognition. At the second stage, the site
launches a camera that records facial expressions. For example, it could re-
quest that the user of the site winks with the right eye or smiles.

In 2013, at the Techfest conference, Microsoft presented the results of re-
search carried out in the area of recognition of facial expressions and voice
tone [29]. The aim of the project „turning monolingual speaker into multilin-
gual” was, in the first instance, the simulation of a human face speaking a
native language. Further research led to the possibility of real-time simulation
of the face of the same human speaking 26 languages.

A team of researchers from the University of Washington designed soft-
ware which analysed thousands of photos posted on the Internet from the
point of view of the incremental changes in the appearance of a human face in
the course of a lifetime, and on this basis is able to estimate the appearance of
a human face in any period of life. The program is so powerful that it can
picture a face at any given time in a human life even in different poses, with
different expressions and in unfavourable light. It is particularly difficult to
predict how a child will look like in later years of life, because the shape of a
face changes dramatically with age. This time however, the researchers say,
the program is so accurate that it can calculate each dimension of the head and
shape of the face, taking into account different age groups; it generates the
target portrait on that basis. The study was financed by Google and Intel Cor-
poration [11].

9 Conclusions

In the examples given of computer graphics and animation the appeal of the
applications software and its increasing capabilities are apparent. There is also

36

Selected Examples of Applications of New Graphics ...

7 Linking computer graphics with real world images – augmented
reality

Virtual Reality is an example of the use of 3D computer graphics and has
become increasingly popular. Its popularity, even on 2D monitors, stems from
the potential of creating increasingly realistic 2D images with it, which are
deceptively reminiscent of real world images viewed through human eyes. Of
course stereoscopic viewing of 3D objects or watching 2D animations in 3D
technology makes an even greater impression. An interesting example is the
reconstruction of Jan Matejko’s painting „Battle of Grunwald” with stereo-
scopic technology Figure 7. This project was commissioned by the National
Museum in Warsaw and created by the studio Platige Image [23] [12].

An interesting idea is to combine two views – from the real world and the
virtual one – and view them on the screen at the same time. Such a solution is
called Augmented Reality (AR). A Virtual Reality (VR) view can also be
combined with another one to create an Augmented Virtuality (AV). The syn-
chronisation of these two worlds can be performed using point markers or by
reference to a geographic position. An example of the use of augmented reali-
ty are Microsoft Hololens glasses [18], which are specially tailored to this
kind of visualisation. Computer graphics can become complementary to the
real world with this technology. For example, with Hololens glasses a lineman
sees the repaired part of a sewerage system and at the same time carries out a
conversation with an expert on Skype (seeing it on a virtual screen Figure 7,
and also sees a graphic which shows which components can be loosened and
with which movements [18].

Figure 7. With Hololens glasses a lineman sees a sewage system, virtual computer
screen and an infographic [18]

37

Filutowicz Z., Przybyszewski K., Paszkowski J.

In museums virtual avatars of historical figures may appear as guides.
Strong interest in using augmented reality is shown in web and traditional
marketing, for example to create a virtual fitting room [4].

8 Facial recognition and identification of facial expressions

The development of these technologies in recent times is linked not only with
animation, but also with facial recognition. The programmers of Facebook
have built software which recognises faces with 97.25% accuracy, which ap-
proaches the capabilities of a human. The program works regardless of pre-
vailing light conditions or the angle of inclination of the head [30].

In 2016, Amazon filed an application for a patent that describes a shopping
method which will make use of facial recognition and facial expressions to
authorise transactions [24]. After accepting a transaction in an online store,
the site launches a camera application and performs a two-step verification
process. The first, of course, is facial recognition. At the second stage, the site
launches a camera that records facial expressions. For example, it could re-
quest that the user of the site winks with the right eye or smiles.

In 2013, at the Techfest conference, Microsoft presented the results of re-
search carried out in the area of recognition of facial expressions and voice
tone [29]. The aim of the project „turning monolingual speaker into multilin-
gual” was, in the first instance, the simulation of a human face speaking a
native language. Further research led to the possibility of real-time simulation
of the face of the same human speaking 26 languages.

A team of researchers from the University of Washington designed soft-
ware which analysed thousands of photos posted on the Internet from the
point of view of the incremental changes in the appearance of a human face in
the course of a lifetime, and on this basis is able to estimate the appearance of
a human face in any period of life. The program is so powerful that it can
picture a face at any given time in a human life even in different poses, with
different expressions and in unfavourable light. It is particularly difficult to
predict how a child will look like in later years of life, because the shape of a
face changes dramatically with age. This time however, the researchers say,
the program is so accurate that it can calculate each dimension of the head and
shape of the face, taking into account different age groups; it generates the
target portrait on that basis. The study was financed by Google and Intel Cor-
poration [11].

9 Conclusions

In the examples given of computer graphics and animation the appeal of the
applications software and its increasing capabilities are apparent. There is also

38

Selected Examples of Applications of New Graphics ...

potential for further development. There is nothing to prevent film frames
with actors from the van Gogh film being transformed by computer into
frames of animated film using the program that was created for the works of
Rembrandt. The automation of film production with computer applications is
a major technological achievement. Museums will become more attractive
and valuable exhibits more popular as, with low costs and seamless technolo-
gies, it will be possible to display faithful copies of those exhibits anywhere.
Graphics programs that permit the analysis of photographs of the face, eyes or
hands for the purpose of medical diagnosis will emerge.

Currently, graphics applications software is designed for an even wider
range of uses. The tools are better adapted to the needs of artists and more
convenient to use. Continuous progress in the field means that it is necessary
to follow the innovations and potential of soft-ware from different producers,
and not be tied to just one firm as in the past. The examples of the technolo-
gies Kinect and Leap Motion are evidence of the scale of change of the last
five years. Performance computing and the very cheap technologies Kinect
and Leap Motion al-low the capture and use of whole body movements for
real-time control of computer pro-grams. The use of graphic applications
software with motion capture technology, performance capture, time-lapse,
morphing, Augmented Reality or the use of avatars in human-computer com-
munication is becoming increasingly popular, cheap and simple.

References

1. AN Srikanth, 2015, Visio Alternatives: 10 Best Diagramming Software,
http://beebom.com/visio-alternatives/

2. Brown M., 2016, 'New Rembrandt' to be unveiled in Amsterdam,
https://www.theguardian.com/artanddesign/2016/apr/05/new-rembrandt-to-be-
unveiled-in-amsterdam

3. Endicott M. L., 2014, 100 Best Talking Avatar Videos, http://meta-
guide.com/videography/100-best-talking-avatar-videos

4. Filutowicz Z., Przybyszewski K., Sowa G., Paszkowski J., 2012, Techniques of
digital photography and computer graphics visualization e-business, Studies &
Proceedings of Polish Association for Knowledge Management” Tom 62, Nr 1,
pp17-31

5. Fleming B, Dobbs D., 2002 Animating Facial Features and Expressions Paper-
back, Helion, 2002

6. FreeMake, 2016, How to Make a Cartoon Yourself: Top 7 Animated Video Mak-
ers Compared, http://www.freemake.com/blog/5-best-sites-to-make-animated-
video-trouble-free/

7. GoAnimate, 2016, Make Professional Animated Videos GoAnimate,
https://goanimate.com/

39

Filutowicz Z., Przybyszewski K., Paszkowski J.

8. Google, 2016, Google Earth Engine Timelapse,
https://earthengine.google.com/timelapse/

9. Hildebrand K., 2012, Polygamia.pl: How does the motion capture studio?
https://www.youtube.com/watch?v=R-N-BpeHm28

10. Holotech Studios, 2016, FaceRig, https://facerig.com/
11. Kemelmacher-Shlizerman I., Suwajanakorn S., Seitz S. M., 2014, Illumination-

Aware Age Progression, http://grail.cs.washington.edu/aging/
12. Kidziński R., Bagiński T., 2010, Jan Matejko's "Battle of Grunwald" in 3D,

http://www.playpoland.org.uk//index.php?name=movies_more&oId=80
13. Kobiela D., Welchman H., 2016, Loving Vincent, http://lovingvincent.com/
14. Leap Motion, 2012, Introducing the Leap Motion,

https://www.youtube.com/watch?v=_d6KuiuteIA
15. Leap Motion, 2016, Reach into new worlds, https://www.leapmotion.com/
16. Lindquist T., 2011, Cat-to-dog morph,

https://www.youtube.com/watch?v=VV807_NqGto
17. Maestri G., 2000, Character Animation, Helion
18. Microsoft HoloLens, 2015, Mixed reality: Your world is the canvas,

https://www.microsoft.com/microsoft-hololens/en-us
19. Microsoft Kinect, 2016, Meet Kinect for Windows,

https://www.developer.microsoft.com/en-us/windows/kinect
20. MovieTrailersNET, 2012, Morphing 33 years in 60 seconds,

https://www.youtube.com/watch?v=lAE-gUuu814
21. National Geographic, 2014, Time-Lapse: Watch Flowers Bloom Before Your

Eyes, https://www.youtube.com/watch?v=LjCzPp-MK48
22. Plantec P., Kurzwell R. M., 2003Virtual Humans: A Build-It-Yourself Kit, Com-

plete with Software and Step-by-Step Instructions, New York: AMACOM
23. Platige Image, 2016, Platige to Artistic Conglomerate,

http://www.platige.com/pl/
24. Rao L., 2016, Amazon Is Trying to Patent Paying With a Selfie,

http://fortune.com/2016/03/14/amazon-patent-selfie/
25. Reallusion, 2016, CrazyTalk, http://www.reallusion.com/crazytalk/default.html
26. Reallusion, 2016, iClone, http://www.reallusion.com/iclone/default.html
27. Skavish D., That's how the idea for Animatron was born,

https://editor.animatron.com/
28. SoInteractive, 2012, The film presents the possibilities of studying SoInteractive

confirms the good condition of the Polish sector of motion capture,
http://www.gry-online.pl/S013.asp?ID=68466

29. Soong F., 2012, Turning a Monolingual Speaker Into Multi-Lingual Speaker,
http://research.microsoft.com/en-us/projects/mixedlangtts/

30. TaigmanY., Yang M., Ranzato M. A., Wolf L., 2014, DeepFace: Closing the
Gap to Human-Level Performance in Face Verification,

38

Selected Examples of Applications of New Graphics ...

potential for further development. There is nothing to prevent film frames
with actors from the van Gogh film being transformed by computer into
frames of animated film using the program that was created for the works of
Rembrandt. The automation of film production with computer applications is
a major technological achievement. Museums will become more attractive
and valuable exhibits more popular as, with low costs and seamless technolo-
gies, it will be possible to display faithful copies of those exhibits anywhere.
Graphics programs that permit the analysis of photographs of the face, eyes or
hands for the purpose of medical diagnosis will emerge.

Currently, graphics applications software is designed for an even wider
range of uses. The tools are better adapted to the needs of artists and more
convenient to use. Continuous progress in the field means that it is necessary
to follow the innovations and potential of soft-ware from different producers,
and not be tied to just one firm as in the past. The examples of the technolo-
gies Kinect and Leap Motion are evidence of the scale of change of the last
five years. Performance computing and the very cheap technologies Kinect
and Leap Motion al-low the capture and use of whole body movements for
real-time control of computer pro-grams. The use of graphic applications
software with motion capture technology, performance capture, time-lapse,
morphing, Augmented Reality or the use of avatars in human-computer com-
munication is becoming increasingly popular, cheap and simple.

References

1. AN Srikanth, 2015, Visio Alternatives: 10 Best Diagramming Software,
http://beebom.com/visio-alternatives/

2. Brown M., 2016, 'New Rembrandt' to be unveiled in Amsterdam,
https://www.theguardian.com/artanddesign/2016/apr/05/new-rembrandt-to-be-
unveiled-in-amsterdam

3. Endicott M. L., 2014, 100 Best Talking Avatar Videos, http://meta-
guide.com/videography/100-best-talking-avatar-videos

4. Filutowicz Z., Przybyszewski K., Sowa G., Paszkowski J., 2012, Techniques of
digital photography and computer graphics visualization e-business, Studies &
Proceedings of Polish Association for Knowledge Management” Tom 62, Nr 1,
pp17-31

5. Fleming B, Dobbs D., 2002 Animating Facial Features and Expressions Paper-
back, Helion, 2002

6. FreeMake, 2016, How to Make a Cartoon Yourself: Top 7 Animated Video Mak-
ers Compared, http://www.freemake.com/blog/5-best-sites-to-make-animated-
video-trouble-free/

7. GoAnimate, 2016, Make Professional Animated Videos GoAnimate,
https://goanimate.com/

39

Filutowicz Z., Przybyszewski K., Paszkowski J.

8. Google, 2016, Google Earth Engine Timelapse,
https://earthengine.google.com/timelapse/

9. Hildebrand K., 2012, Polygamia.pl: How does the motion capture studio?
https://www.youtube.com/watch?v=R-N-BpeHm28

10. Holotech Studios, 2016, FaceRig, https://facerig.com/
11. Kemelmacher-Shlizerman I., Suwajanakorn S., Seitz S. M., 2014, Illumination-

Aware Age Progression, http://grail.cs.washington.edu/aging/
12. Kidziński R., Bagiński T., 2010, Jan Matejko's "Battle of Grunwald" in 3D,

http://www.playpoland.org.uk//index.php?name=movies_more&oId=80
13. Kobiela D., Welchman H., 2016, Loving Vincent, http://lovingvincent.com/
14. Leap Motion, 2012, Introducing the Leap Motion,

https://www.youtube.com/watch?v=_d6KuiuteIA
15. Leap Motion, 2016, Reach into new worlds, https://www.leapmotion.com/
16. Lindquist T., 2011, Cat-to-dog morph,

https://www.youtube.com/watch?v=VV807_NqGto
17. Maestri G., 2000, Character Animation, Helion
18. Microsoft HoloLens, 2015, Mixed reality: Your world is the canvas,

https://www.microsoft.com/microsoft-hololens/en-us
19. Microsoft Kinect, 2016, Meet Kinect for Windows,

https://www.developer.microsoft.com/en-us/windows/kinect
20. MovieTrailersNET, 2012, Morphing 33 years in 60 seconds,

https://www.youtube.com/watch?v=lAE-gUuu814
21. National Geographic, 2014, Time-Lapse: Watch Flowers Bloom Before Your

Eyes, https://www.youtube.com/watch?v=LjCzPp-MK48
22. Plantec P., Kurzwell R. M., 2003Virtual Humans: A Build-It-Yourself Kit, Com-

plete with Software and Step-by-Step Instructions, New York: AMACOM
23. Platige Image, 2016, Platige to Artistic Conglomerate,

http://www.platige.com/pl/
24. Rao L., 2016, Amazon Is Trying to Patent Paying With a Selfie,

http://fortune.com/2016/03/14/amazon-patent-selfie/
25. Reallusion, 2016, CrazyTalk, http://www.reallusion.com/crazytalk/default.html
26. Reallusion, 2016, iClone, http://www.reallusion.com/iclone/default.html
27. Skavish D., That's how the idea for Animatron was born,

https://editor.animatron.com/
28. SoInteractive, 2012, The film presents the possibilities of studying SoInteractive

confirms the good condition of the Polish sector of motion capture,
http://www.gry-online.pl/S013.asp?ID=68466

29. Soong F., 2012, Turning a Monolingual Speaker Into Multi-Lingual Speaker,
http://research.microsoft.com/en-us/projects/mixedlangtts/

30. TaigmanY., Yang M., Ranzato M. A., Wolf L., 2014, DeepFace: Closing the
Gap to Human-Level Performance in Face Verification,

40

Selected Examples of Applications of New Graphics ...

https://research.fb.com/publications/deepface-closing-the-gap-to-human-level-
performance-in-face-verification/

31. van Lun E., 2016, Virtual Agents / Chatbots Directory,
https://www.chatbots.org/

32. Wideo.co, 2016, Create videos easily for your marketing campaigns,
http://get.wideo.co/en/

41

RESOURCE MONITORING FOR WIRELESS SENSOR
NETWORKS USING ANFIS

Nagesha1, Sunilkumar S. Manvi2

1 Department of Electronics and Instrumentation Engineering
JSS Academy of Technical Education, Bengaluru, India

nageshashiva@gmail.com
2 School of Computing and Information Technology

Reva University, Bengaluru, India
sunil.manvi@revainstituion.org

Abstract
Wireless sensor networks (WSNs) are usually a resource constrained networks
which have limited energy, bandwidth, processing power, memory etc. These
networks are now part of Internet by the name Internet of Things (IoT). To get
many services from WSNs, we may need to run many applications in the sensor
nodes which consumes resources. Ideally, the resources availability of all
sensor nodes should be known to the sink before it requests for any further
service(s) from the sensor node(s). Hence, continuous monitoring of the
resources of the sensor nodes by the sink is essential. The proposed work is a
framework for monitoring certain important resources of sensor network using
Adaptive-Neuro Fuzzy Inference System (ANFIS) and Constrained Application
Protocol (CoAP). The ANFIS is trained with these resources consumption
patterns. The input to ANFIS is the resources consumption levels and the output
is the resources consumed levels that needs to be sent to the sink which may be
individual or combinations of resources. The trained ANFIS generates the
output periodically which determines resources consumption levels that needs
to be sent to the sink. Also, ANFIS continuously learns using hybrid learning
algorithm (which is basically a combination of back propagation and least
squares method) and updates its parameters for better results. The CoAP
protocol with its observe option is used to transport the resource monitoring
data from the sensor nodes to the cluster head, then from the cluster head to the
sink. The sensor nodes runs coap server, the cluster head runs both coap client
and server and the sink runs coap client. The performance of the proposed work
is compared with LoWPAN network management protocol (LNMP) and
EmNets Network Management Protocol (EMP) in terms of bandwidth and
energy overheads. It is observed that proposed work performs better when
compared to the existing works.

Key words: Wireless sensor networks (WSNs); Resource management;
Resource Monitoring; Constrained application protocol (CoAP);
ANFIS; Fuzzy inference system.

40

Selected Examples of Applications of New Graphics ...

https://research.fb.com/publications/deepface-closing-the-gap-to-human-level-
performance-in-face-verification/

31. van Lun E., 2016, Virtual Agents / Chatbots Directory,
https://www.chatbots.org/

32. Wideo.co, 2016, Create videos easily for your marketing campaigns,
http://get.wideo.co/en/

41

RESOURCE MONITORING FOR WIRELESS SENSOR
NETWORKS USING ANFIS

Nagesha1, Sunilkumar S. Manvi2

1 Department of Electronics and Instrumentation Engineering
JSS Academy of Technical Education, Bengaluru, India

nageshashiva@gmail.com
2 School of Computing and Information Technology

Reva University, Bengaluru, India
sunil.manvi@revainstituion.org

Abstract
Wireless sensor networks (WSNs) are usually a resource constrained networks
which have limited energy, bandwidth, processing power, memory etc. These
networks are now part of Internet by the name Internet of Things (IoT). To get
many services from WSNs, we may need to run many applications in the sensor
nodes which consumes resources. Ideally, the resources availability of all
sensor nodes should be known to the sink before it requests for any further
service(s) from the sensor node(s). Hence, continuous monitoring of the
resources of the sensor nodes by the sink is essential. The proposed work is a
framework for monitoring certain important resources of sensor network using
Adaptive-Neuro Fuzzy Inference System (ANFIS) and Constrained Application
Protocol (CoAP). The ANFIS is trained with these resources consumption
patterns. The input to ANFIS is the resources consumption levels and the output
is the resources consumed levels that needs to be sent to the sink which may be
individual or combinations of resources. The trained ANFIS generates the
output periodically which determines resources consumption levels that needs
to be sent to the sink. Also, ANFIS continuously learns using hybrid learning
algorithm (which is basically a combination of back propagation and least
squares method) and updates its parameters for better results. The CoAP
protocol with its observe option is used to transport the resource monitoring
data from the sensor nodes to the cluster head, then from the cluster head to the
sink. The sensor nodes runs coap server, the cluster head runs both coap client
and server and the sink runs coap client. The performance of the proposed work
is compared with LoWPAN network management protocol (LNMP) and
EmNets Network Management Protocol (EMP) in terms of bandwidth and
energy overheads. It is observed that proposed work performs better when
compared to the existing works.

Key words: Wireless sensor networks (WSNs); Resource management;
Resource Monitoring; Constrained application protocol (CoAP);
ANFIS; Fuzzy inference system.

42

Resource Monitoring for Wireless Sensor ...

1 Introduction

The Wireless Sensor Networks as described by many researchers [1], is main-
ly used for monitoring the physical world. It is now connected to the Internet
using new communication technologies like IEEE 802.15.4 standard,
6LoWPAN, RPL, CoAP etc. Internet of Things [2] is the larger technological
term used to refer the connectivity of building automation, industrial automa-
tion, transportation, logistics, wireless sensor networks etc. with the Internet.
Sensor nodes or any other real world things (embedded devices) can be con-
nected to other sensor nodes or things in the other part of the world through
global Internet infrastructure for timely collection and sharing of data as part
of various physical world monitoring applications.

The design and development of WSNs is influenced by managing re-
sources which are usually limited in WSNs, wireless radio characteristics,
middleware, application specific QoS requirements, etc. Limited resources of
sensor nodes which mainly include energy, bandwidth, memory space, pro-
cessing power, etc. These resources of sensor nodes have to be managed ef-
fectively to provide better QoS services, reliability, greater performance and
long life span of the WSNs. Resource allocation, resource mapping, resource
adaptation, resource monitoring, resource discovery and selection, resource
estimation, resource scheduling and resource modeling are some issues per-
taining to resource management in WSNs. This paper addresses the monitor-
ing of resources of sensor nodes.

Resource Monitoring is a systematic process of observing, tracking and re-
cording data about resources of sensor nodes for the purposes of utilizing the
services of sensor nodes and network to the maximum possible extent. Ener-
gy, bandwidth, processing capability, memory space, etc. are some of the
main resources of sensor nodes. These resources are utilized by sensor node to
run applications, to transmit/receive data, temporary storage of data, etc. Sink
is a device which is responsible for monitoring sensor nodes resources, rou-
tinely gathers information about resources of the sensor nodes.

Resource monitoring is required in WSNs for the following reasons. (1)
Gathering of information about sensor nodes of the network which can be
used to make decisions about the demand for better services or more services
from the sensor nodes. (2) To learn from experiences to improve in demand-
ing services from the sensor nodes. (3) To have an accountability of resources
used for different purposes and the obtained results. (4) Information gathered
through monitoring which could be used to analyze, evaluate all components
of the network in order to measure its effectiveness and adjust inputs where
ever necessary. (5) Monitoring allows results, processes and experiences to be
documented and used as a basis to steer decision making and learning pro-
cesses. (6) The data acquired through monitoring is used for evaluation.

43

Nagesha, Sunilkumar S. Manvi

The existing IP based solutions for the resource monitoring in WSNs are
based on periodic reporting about resources or use query-response techniques.
The periodic reporting about the resources by the sensor nodes to the sink is
irrespective of the resources consumed by different processes or applications.
Information about resources are reported even when they are not consumed.
This reporting is unnecessary and results in the consumption of resources
(bandwidth and energy for the transport of resource monitoring data from
sensor nodes to sink) which are precious in WSNs. Query processing is a two
way communication which results in delay in obtaining the information about
the resources and consumes extra bandwidth and energy. These are some of
the problems that are addressed in this paper with solutions provided by de-
signing Adaptive-Neuro Fuzzy Inference System (ANFIS) and using Con-
strained Application Protocol (CoAP) along with its observe option.

Resources to be monitored are fed as inputs to the multi-layered ANFIS
[3] whose output depends on training with some input-output data pairs and
subsequent learning. The consumption level of the resources and which re-
sources need to be transported to the sink from sensor nodes makes input-
output data pair. The ANFIS is trained to indicate resources consumption
level to be transported when consumption exceeds 40%. If there are three
resources to be monitored, then ANFIS may indicate to either transport con-
sumption level of any one resource or combination of any two resources or all
three resources depending on the resources consumed by the sensor node. The
ANFIS also learns to serve better using back propagation and least squares
method.

The Constrained Application Protocol [4] along with its observe option [5]
and client-server architecture is used to collect the information about re-
sources of sensor nodes. The WSN is organized into clusters where the cluster
head transports the information to the sink. The cluster head is the client
which collects the resources information of sensor nodes. The sensor nodes
are the servers which supply their resources consumption information to the
cluster head. The cluster head acts as the client while collecting resource mon-
itored data from sensor nodes and acts as a server when it supplies the same to
the sink. The client endpoint of the CoAP device registers as a client to the
server(s) with its observe option. After the registration, the CoAP server with
the observe option sends the resource information whenever there is a change
in the resource consumption.

Our contributions are as listed below.
1. IP based resource monitoring technique is developed to efficiently collect

resources consumption information from sensor nodes of the WSNs.
2. The developed resource monitoring technique uses ANFIS which is de-

signed to enhance the efficiency of resources information collection. The
ANFIS is trained to intelligently decide which resources information has
to be sent to the sink.

42

Resource Monitoring for Wireless Sensor ...

1 Introduction

The Wireless Sensor Networks as described by many researchers [1], is main-
ly used for monitoring the physical world. It is now connected to the Internet
using new communication technologies like IEEE 802.15.4 standard,
6LoWPAN, RPL, CoAP etc. Internet of Things [2] is the larger technological
term used to refer the connectivity of building automation, industrial automa-
tion, transportation, logistics, wireless sensor networks etc. with the Internet.
Sensor nodes or any other real world things (embedded devices) can be con-
nected to other sensor nodes or things in the other part of the world through
global Internet infrastructure for timely collection and sharing of data as part
of various physical world monitoring applications.

The design and development of WSNs is influenced by managing re-
sources which are usually limited in WSNs, wireless radio characteristics,
middleware, application specific QoS requirements, etc. Limited resources of
sensor nodes which mainly include energy, bandwidth, memory space, pro-
cessing power, etc. These resources of sensor nodes have to be managed ef-
fectively to provide better QoS services, reliability, greater performance and
long life span of the WSNs. Resource allocation, resource mapping, resource
adaptation, resource monitoring, resource discovery and selection, resource
estimation, resource scheduling and resource modeling are some issues per-
taining to resource management in WSNs. This paper addresses the monitor-
ing of resources of sensor nodes.

Resource Monitoring is a systematic process of observing, tracking and re-
cording data about resources of sensor nodes for the purposes of utilizing the
services of sensor nodes and network to the maximum possible extent. Ener-
gy, bandwidth, processing capability, memory space, etc. are some of the
main resources of sensor nodes. These resources are utilized by sensor node to
run applications, to transmit/receive data, temporary storage of data, etc. Sink
is a device which is responsible for monitoring sensor nodes resources, rou-
tinely gathers information about resources of the sensor nodes.

Resource monitoring is required in WSNs for the following reasons. (1)
Gathering of information about sensor nodes of the network which can be
used to make decisions about the demand for better services or more services
from the sensor nodes. (2) To learn from experiences to improve in demand-
ing services from the sensor nodes. (3) To have an accountability of resources
used for different purposes and the obtained results. (4) Information gathered
through monitoring which could be used to analyze, evaluate all components
of the network in order to measure its effectiveness and adjust inputs where
ever necessary. (5) Monitoring allows results, processes and experiences to be
documented and used as a basis to steer decision making and learning pro-
cesses. (6) The data acquired through monitoring is used for evaluation.

43

Nagesha, Sunilkumar S. Manvi

The existing IP based solutions for the resource monitoring in WSNs are
based on periodic reporting about resources or use query-response techniques.
The periodic reporting about the resources by the sensor nodes to the sink is
irrespective of the resources consumed by different processes or applications.
Information about resources are reported even when they are not consumed.
This reporting is unnecessary and results in the consumption of resources
(bandwidth and energy for the transport of resource monitoring data from
sensor nodes to sink) which are precious in WSNs. Query processing is a two
way communication which results in delay in obtaining the information about
the resources and consumes extra bandwidth and energy. These are some of
the problems that are addressed in this paper with solutions provided by de-
signing Adaptive-Neuro Fuzzy Inference System (ANFIS) and using Con-
strained Application Protocol (CoAP) along with its observe option.

Resources to be monitored are fed as inputs to the multi-layered ANFIS
[3] whose output depends on training with some input-output data pairs and
subsequent learning. The consumption level of the resources and which re-
sources need to be transported to the sink from sensor nodes makes input-
output data pair. The ANFIS is trained to indicate resources consumption
level to be transported when consumption exceeds 40%. If there are three
resources to be monitored, then ANFIS may indicate to either transport con-
sumption level of any one resource or combination of any two resources or all
three resources depending on the resources consumed by the sensor node. The
ANFIS also learns to serve better using back propagation and least squares
method.

The Constrained Application Protocol [4] along with its observe option [5]
and client-server architecture is used to collect the information about re-
sources of sensor nodes. The WSN is organized into clusters where the cluster
head transports the information to the sink. The cluster head is the client
which collects the resources information of sensor nodes. The sensor nodes
are the servers which supply their resources consumption information to the
cluster head. The cluster head acts as the client while collecting resource mon-
itored data from sensor nodes and acts as a server when it supplies the same to
the sink. The client endpoint of the CoAP device registers as a client to the
server(s) with its observe option. After the registration, the CoAP server with
the observe option sends the resource information whenever there is a change
in the resource consumption.

Our contributions are as listed below.
1. IP based resource monitoring technique is developed to efficiently collect

resources consumption information from sensor nodes of the WSNs.
2. The developed resource monitoring technique uses ANFIS which is de-

signed to enhance the efficiency of resources information collection. The
ANFIS is trained to intelligently decide which resources information has
to be sent to the sink.

44

Resource Monitoring for Wireless Sensor ...

3. The ANFIS training data is developed based on intuition and is used to
optimize the membership functions of the ANFIS.

4. Finding the efficiency of the developed technique in terms of bandwidth
and energy at node level, cluster level and network level.

5. Using the CoAP with observe option enhances the efficiency of devel-
oped resource monitoring technique. The combination of the coap with
its observe option and ANFIS gives a superior performance (in terms of
bandwidth utilization and energy consumption to transport the monitor-
ing data) compared to LNMP (query based) and EMP (periodic report-
ing) based resource monitoring techniques.

The rest of the paper is organized as follows. The related work is given in

section 2. The protocol stack of the sensor node is discussed in section 3. The
complete work description is provided in section 4. Simulation of the work at
node level, cluster level, network level and comparison with other works is
described in the section 5. The section 6 concludes the paper

2 Related Work

Energy of sensor nodes is continuously monitored to avoid sensor node failure
which in turn may result in the sensor network failure. Some of energy moni-
toring techniques are as follows. eScan [6] is a monitoring technique devel-
oped to monitor the energy levels (energy map) of sensor nodes of the net-
work using aggregation based approach. Later predication based energy maps
are developed [7] to monitor the energy levels of the sensor network. Further,
monitoring the energy with low overhead is proposed [8] using the techniques
such as hierarchical monitoring structure, in-network aggregation and cluster
heads rotation.

Similarly monitoring techniques are developed to monitor the link quality,
congestion level, bandwidth, buffer length etc. Snooping based link quality
monitoring is designed [9] which listens to the channel and infers the success
and loss rates. CODA [10] and ECODA [11] are receiver based congestion
detection and monitoring mechanisms. All these resource monitoring mecha-
nism deals with only one resource and that is communicated to the necessary
ends (e.g. sink). Sending monitoring data using piggybacking is proposed
[12]. Our work is not to improve any of these works of resource monitoring,
instead, designing a framework to send consumption level of all necessary
resources (like residual energy, bandwidth, buffer length, link quality) collec-
tively and efficiently (based on some criteria) to the sink which uses these
resources consumption level to monitor the sensor network services to provide
services to its users.

45

Nagesha, Sunilkumar S. Manvi

Other related works are as follows. Some of the applications which pro-
vide sensor network management schemes in terms of controlling and moni-
toring [13] are BOSS, MANNA, WinMS, TinyDB, Mote-View, TP. All these
are non-IP based network management systems. The LowPAN Network Man-
agement protocol (LNMP) [14] and EmNets Network Management Protocol
(EMP) [15] are IP based sensor network management protocols. The LNMP
uses query processing and EMP uses periodic reporting to fetch information
from the sensor network. Our work uses ANFIS and CoAP with its observe
option to push resource monitored data from sensor nodes to the sink.

Now sensor networks are viewed as part of Internet of things. Web ser-
vices are provided with two different styles: Big Web services (SOAP) and
RESTful web services. REST style web service is more suitable for sensor
devices because of its simplicity. Recent work on management of sensor de-
vices uses REST style [16] web service. This work is on complete sensor de-
vice management but not addressed networking issues. Our proposed work is
not on complete device management but considers collecting resources con-
sumption level of all sensor nodes of the network.

We have not found any literature which uses the ANFIS model in WSNs
for Resource Monitoring. Recent work on Resource Mapping [17] uses AN-
FIS for video communication. ANFIS is used to decide which resources level
has to be notified to the registered client(s) using coap with observe option.

3 Sensor node Protocol Stack

A low power, highly reliable and Internet enabled standardized protocol stack
for IoT [18] is discussed by Maria Rita Palattella et al. The same protocol
stack is adopted in this proposed work. Figure 1 illustrates IoT protocol stack
along with protocols from physical layer to application layer.

3.1 Low Power PHY and MAC Layer – IEEE 802.15.4(2011)

The IEEE 802.15.4 - 2011 [19] defines the specifications for physical layer
(PHY) and medium access layer (MAC) for low cost, low-power and low data
rate wireless connectivity. The physical layer provides two services (1) The
PHY data service: This service enables the reception and transmission of PHY
protocol data units across the physical radio channel. (2) The PHY manage-
ment service: This service provides activation and deactivation of the radio
transceiver, energy detection within the channel, link quality indicator, clear
channel assessment etc. Some of the PHYs defined in this standard are O-
QPSK PHY, BPSK PHY, ASK PHY, CSS PHY, UWB PHY etc.

The MAC sublayer provides two services (1) The MAC data service: This
service enables the reception and the transmission of MAC protocol data units

44

Resource Monitoring for Wireless Sensor ...

3. The ANFIS training data is developed based on intuition and is used to
optimize the membership functions of the ANFIS.

4. Finding the efficiency of the developed technique in terms of bandwidth
and energy at node level, cluster level and network level.

5. Using the CoAP with observe option enhances the efficiency of devel-
oped resource monitoring technique. The combination of the coap with
its observe option and ANFIS gives a superior performance (in terms of
bandwidth utilization and energy consumption to transport the monitor-
ing data) compared to LNMP (query based) and EMP (periodic report-
ing) based resource monitoring techniques.

The rest of the paper is organized as follows. The related work is given in

section 2. The protocol stack of the sensor node is discussed in section 3. The
complete work description is provided in section 4. Simulation of the work at
node level, cluster level, network level and comparison with other works is
described in the section 5. The section 6 concludes the paper

2 Related Work

Energy of sensor nodes is continuously monitored to avoid sensor node failure
which in turn may result in the sensor network failure. Some of energy moni-
toring techniques are as follows. eScan [6] is a monitoring technique devel-
oped to monitor the energy levels (energy map) of sensor nodes of the net-
work using aggregation based approach. Later predication based energy maps
are developed [7] to monitor the energy levels of the sensor network. Further,
monitoring the energy with low overhead is proposed [8] using the techniques
such as hierarchical monitoring structure, in-network aggregation and cluster
heads rotation.

Similarly monitoring techniques are developed to monitor the link quality,
congestion level, bandwidth, buffer length etc. Snooping based link quality
monitoring is designed [9] which listens to the channel and infers the success
and loss rates. CODA [10] and ECODA [11] are receiver based congestion
detection and monitoring mechanisms. All these resource monitoring mecha-
nism deals with only one resource and that is communicated to the necessary
ends (e.g. sink). Sending monitoring data using piggybacking is proposed
[12]. Our work is not to improve any of these works of resource monitoring,
instead, designing a framework to send consumption level of all necessary
resources (like residual energy, bandwidth, buffer length, link quality) collec-
tively and efficiently (based on some criteria) to the sink which uses these
resources consumption level to monitor the sensor network services to provide
services to its users.

45

Nagesha, Sunilkumar S. Manvi

Other related works are as follows. Some of the applications which pro-
vide sensor network management schemes in terms of controlling and moni-
toring [13] are BOSS, MANNA, WinMS, TinyDB, Mote-View, TP. All these
are non-IP based network management systems. The LowPAN Network Man-
agement protocol (LNMP) [14] and EmNets Network Management Protocol
(EMP) [15] are IP based sensor network management protocols. The LNMP
uses query processing and EMP uses periodic reporting to fetch information
from the sensor network. Our work uses ANFIS and CoAP with its observe
option to push resource monitored data from sensor nodes to the sink.

Now sensor networks are viewed as part of Internet of things. Web ser-
vices are provided with two different styles: Big Web services (SOAP) and
RESTful web services. REST style web service is more suitable for sensor
devices because of its simplicity. Recent work on management of sensor de-
vices uses REST style [16] web service. This work is on complete sensor de-
vice management but not addressed networking issues. Our proposed work is
not on complete device management but considers collecting resources con-
sumption level of all sensor nodes of the network.

We have not found any literature which uses the ANFIS model in WSNs
for Resource Monitoring. Recent work on Resource Mapping [17] uses AN-
FIS for video communication. ANFIS is used to decide which resources level
has to be notified to the registered client(s) using coap with observe option.

3 Sensor node Protocol Stack

A low power, highly reliable and Internet enabled standardized protocol stack
for IoT [18] is discussed by Maria Rita Palattella et al. The same protocol
stack is adopted in this proposed work. Figure 1 illustrates IoT protocol stack
along with protocols from physical layer to application layer.

3.1 Low Power PHY and MAC Layer – IEEE 802.15.4(2011)

The IEEE 802.15.4 - 2011 [19] defines the specifications for physical layer
(PHY) and medium access layer (MAC) for low cost, low-power and low data
rate wireless connectivity. The physical layer provides two services (1) The
PHY data service: This service enables the reception and transmission of PHY
protocol data units across the physical radio channel. (2) The PHY manage-
ment service: This service provides activation and deactivation of the radio
transceiver, energy detection within the channel, link quality indicator, clear
channel assessment etc. Some of the PHYs defined in this standard are O-
QPSK PHY, BPSK PHY, ASK PHY, CSS PHY, UWB PHY etc.

The MAC sublayer provides two services (1) The MAC data service: This
service enables the reception and the transmission of MAC protocol data units

46

Resource Monitoring for Wireless Sensor ...

across the physical data service. (2) The MAC management service: This
service provides beacon management, guaranteed time slot (GTS) manage-
ment, channel access, frame validation etc.

Figure 1. IoT Protocol Stack

3.2 Adaptation layer - IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs)

The 6LoWPAN, an IETF standard [20] is necessary between IPv6 layer and
IEEE 802.15.4 MAC layer of the protocol stack to fit the IEEE 802.15.4 into
the stack. The IEEE 802.15.4 standard has a frame size of 127-byte, with pay-
load size of layer 2 as low as 72 bytes. The IPv6 standard has a minimum
packet size of 1280 bytes, thus requiring fragmentation and reassembly. This
is done by the adaptation layer 6LoWPAN.

The IPv6 and UDP headers consumes significant portion of the payload
space in a single IEEE802.15.4 packet. To reduce the overhead, the header
compression is provided by the 6LoWPAN

3.3 Routing – RPL

The IPv6 routing protocol for low power and lossy networks (RPL) [21] is
designed considering the constrained nodes (with limited energy, memory and
processing power) which supports only low data rates. It supports three basic
traffic flows (1) point-to-point (2) point-to-multipoint (3) multipoint-to-point.
The RPL does not rely on any particular link layer technology and designed to
operate over different link layers.

47

Nagesha, Sunilkumar S. Manvi

The RPL is basically a distance vector routing protocol which does not re-
quire predefined topology but is able to build the topology of the network.
The routes of RPL are optimized for traffic from (or to) one or more sinks
(roots) of the topology. It organizes a topology of the network as a Directed
Acyclic Graph (DAG). The DAG is partitioned into many Destination Orient-
ed DAGs (DODAGs), one DODAG per sink. In multiple root DAG, the roots
are joined by common backbone (transit link).

3.4 Transport Layer – UDP

The user datagram protocol (UDP) provides minimum protocol mechanism
for application programs to send packets to other application programs. This
protocol is transaction based and does not provide any guaranteed delivery of
packet and duplicate protection. The application layer protocol is responsible
for reliability (i.e. retransmission of lost packets).

3.5 Application Layer – CoAP

The Constrained Application Protocol (CoAP) is a REST style and specially
designed web transfer protocol (like HTTP) for use with constrained networks
and constrained nodes. It includes key concepts of the web such as built in
discovery of services and resources, multicast support, Internet media types
and URIs. It has two main features (1) Messaging: deals with UDP to ex-
change messages asynchronously between CoAP endpoints. CoAP defines
four types of messages: confirmable (for reliability), Non-confirmable, ac-
knowledgment, reset. (2) Requests and Responses: deals with the application
using methods (GET, PUT, POST, DELETE) and response codes
(2.xx, 4.xx, 5.xx).

The CoAP's interaction model is similar to the client-server model of
HTTP. The observe extension to the CoAP offers a mechanism for a CoAP
client to observe a resource on a CoAP server. With this extension of CoAP,
client can retrieve a representation of the resource and request this representa-
tion to be updated by the server over a period of time as long as it is interested
in the resource. The sensor node which has resources to be monitored acts as a
server and sink acts as a client. The registration by the client and subsequent
notifications by the server is as shown in the Figure 2. The client uses the
GET request with observe option (observe = 0) of the CoAP (extended GET)
for registration. After registration, the server immediately responds with cur-
rent resource level with observe option. The observe option of the
CoAP when included in a response (server side), identifies the message as a
notification. The server sets the value of the observe option of each notifica-
tion in the increasing sequence number order. This is helpful in reordering the

46

Resource Monitoring for Wireless Sensor ...

across the physical data service. (2) The MAC management service: This
service provides beacon management, guaranteed time slot (GTS) manage-
ment, channel access, frame validation etc.

Figure 1. IoT Protocol Stack

3.2 Adaptation layer - IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs)

The 6LoWPAN, an IETF standard [20] is necessary between IPv6 layer and
IEEE 802.15.4 MAC layer of the protocol stack to fit the IEEE 802.15.4 into
the stack. The IEEE 802.15.4 standard has a frame size of 127-byte, with pay-
load size of layer 2 as low as 72 bytes. The IPv6 standard has a minimum
packet size of 1280 bytes, thus requiring fragmentation and reassembly. This
is done by the adaptation layer 6LoWPAN.

The IPv6 and UDP headers consumes significant portion of the payload
space in a single IEEE802.15.4 packet. To reduce the overhead, the header
compression is provided by the 6LoWPAN

3.3 Routing – RPL

The IPv6 routing protocol for low power and lossy networks (RPL) [21] is
designed considering the constrained nodes (with limited energy, memory and
processing power) which supports only low data rates. It supports three basic
traffic flows (1) point-to-point (2) point-to-multipoint (3) multipoint-to-point.
The RPL does not rely on any particular link layer technology and designed to
operate over different link layers.

47

Nagesha, Sunilkumar S. Manvi

The RPL is basically a distance vector routing protocol which does not re-
quire predefined topology but is able to build the topology of the network.
The routes of RPL are optimized for traffic from (or to) one or more sinks
(roots) of the topology. It organizes a topology of the network as a Directed
Acyclic Graph (DAG). The DAG is partitioned into many Destination Orient-
ed DAGs (DODAGs), one DODAG per sink. In multiple root DAG, the roots
are joined by common backbone (transit link).

3.4 Transport Layer – UDP

The user datagram protocol (UDP) provides minimum protocol mechanism
for application programs to send packets to other application programs. This
protocol is transaction based and does not provide any guaranteed delivery of
packet and duplicate protection. The application layer protocol is responsible
for reliability (i.e. retransmission of lost packets).

3.5 Application Layer – CoAP

The Constrained Application Protocol (CoAP) is a REST style and specially
designed web transfer protocol (like HTTP) for use with constrained networks
and constrained nodes. It includes key concepts of the web such as built in
discovery of services and resources, multicast support, Internet media types
and URIs. It has two main features (1) Messaging: deals with UDP to ex-
change messages asynchronously between CoAP endpoints. CoAP defines
four types of messages: confirmable (for reliability), Non-confirmable, ac-
knowledgment, reset. (2) Requests and Responses: deals with the application
using methods (GET, PUT, POST, DELETE) and response codes
(2.xx, 4.xx, 5.xx).

The CoAP's interaction model is similar to the client-server model of
HTTP. The observe extension to the CoAP offers a mechanism for a CoAP
client to observe a resource on a CoAP server. With this extension of CoAP,
client can retrieve a representation of the resource and request this representa-
tion to be updated by the server over a period of time as long as it is interested
in the resource. The sensor node which has resources to be monitored acts as a
server and sink acts as a client. The registration by the client and subsequent
notifications by the server is as shown in the Figure 2. The client uses the
GET request with observe option (observe = 0) of the CoAP (extended GET)
for registration. After registration, the server immediately responds with cur-
rent resource level with observe option. The observe option of the
CoAP when included in a response (server side), identifies the message as a
notification. The server sets the value of the observe option of each notifica-
tion in the increasing sequence number order. This is helpful in reordering the

48

Resource Monitoring for Wireless Sensor ...

notifications if a notification arrives at the client later than a newer notifica-
tion from the server. The request by the client (registration) carries a self-
generated token that is echoed by the server in the resulting subsequent notifi-
cations. The notification uses the 2.05 (content) as a response code which
indicates that the payload in the response is a representation of the requested
resource.

Figure 2. CoAP with observe option

4 ANFIS based Resource Monitoring using CoAP in Wireless
Sensor Networks

4.1 Resources of the Sensor Networks

There are mainly two types of resources in sensor networks: physical and
logical. The processor, memory, sensors etc. are important physical resources
of the sensor nodes whereas energy, bandwidth, operating system, network
throughput etc. are important logical resources. The extent of involvement of
the processor, amount of memory occupied by the current processes, residual
energy, bandwidth are the important resources of sensor nodes to be moni-
tored in WSNs. In general, consider the resources to be monitored as R1, R2,

49

Nagesha, Sunilkumar S. Manvi

R3, ..., Rn. The patterns of consumption of these resources are observed over
the period of time. The consumption patterns of these resources are finalized
and used for monitoring of the resources.

4.2 Resource Monitoring Policy

The proposed work is the framework for the monitoring of three resources R1,
R2 and R3. We assume that the consumption patterns of these resources are as
shown in the Figure 3. These consumption patterns can be used for the three
most important resources of sensor node: energy, memory and processing
speed. These are the inputs to the ANFIS which gives the output as which
resources level should be notified to the registered client based on the policy
shown in the Table 1. The policy is based on the assumed resource consump-
tion pattern and is not to notify the resources level whose consumption level is
below 40% to the registered client.

Figure 3. Resource consumption patterns

4.3 Adaptive-Neuro Fuzzy Inference System (ANFIS)

The ANFIS is a class of adaptive neural networks that are functionally same
as fuzzy inference systems. The fuzzy inference system is embedded into the
framework of adaptive neural networks to obtain the ANFIS. Fuzzy if-then
rules and membership functions based on the zero-order Sugeno type fuzzy

48

Resource Monitoring for Wireless Sensor ...

notifications if a notification arrives at the client later than a newer notifica-
tion from the server. The request by the client (registration) carries a self-
generated token that is echoed by the server in the resulting subsequent notifi-
cations. The notification uses the 2.05 (content) as a response code which
indicates that the payload in the response is a representation of the requested
resource.

Figure 2. CoAP with observe option

4 ANFIS based Resource Monitoring using CoAP in Wireless
Sensor Networks

4.1 Resources of the Sensor Networks

There are mainly two types of resources in sensor networks: physical and
logical. The processor, memory, sensors etc. are important physical resources
of the sensor nodes whereas energy, bandwidth, operating system, network
throughput etc. are important logical resources. The extent of involvement of
the processor, amount of memory occupied by the current processes, residual
energy, bandwidth are the important resources of sensor nodes to be moni-
tored in WSNs. In general, consider the resources to be monitored as R1, R2,

49

Nagesha, Sunilkumar S. Manvi

R3, ..., Rn. The patterns of consumption of these resources are observed over
the period of time. The consumption patterns of these resources are finalized
and used for monitoring of the resources.

4.2 Resource Monitoring Policy

The proposed work is the framework for the monitoring of three resources R1,
R2 and R3. We assume that the consumption patterns of these resources are as
shown in the Figure 3. These consumption patterns can be used for the three
most important resources of sensor node: energy, memory and processing
speed. These are the inputs to the ANFIS which gives the output as which
resources level should be notified to the registered client based on the policy
shown in the Table 1. The policy is based on the assumed resource consump-
tion pattern and is not to notify the resources level whose consumption level is
below 40% to the registered client.

Figure 3. Resource consumption patterns

4.3 Adaptive-Neuro Fuzzy Inference System (ANFIS)

The ANFIS is a class of adaptive neural networks that are functionally same
as fuzzy inference systems. The fuzzy inference system is embedded into the
framework of adaptive neural networks to obtain the ANFIS. Fuzzy if-then
rules and membership functions based on the zero-order Sugeno type fuzzy

50

Resource Monitoring for Wireless Sensor ...

inference system [22] are used to construct the ANFIS which is used to gener-
ate the required input-output data pairs of the proposed work as shown in the
Table 2. The membership functions parameters are tuned using the input-
output training data set and the hybrid learning algorithm (i.e. combination of
back propagation and least squares method).

Table 1. Resource Monitoring Policy

Resources consumed Resources to be notified code
R1 < 0.4, R2 < 0.4, R3 < 0.4 NULL 0
R1 > 0.4, R2 < 0.4, R3 < 0.4 R1 1
R1 > 0.4, R2 > 0.4, R3 < 0.4 R2 R1 2
R2 > 0.4, R1 < 0.4, R3 < 0.4 R2 3
R2 > 0.4, R3 > 0.4, R1 < 0.4 R3 R2 4
R3 > 0.4, R1 < 0.4, R2 < 0.4 R3 ³
R3 > 0.4, R1 > 0.4, R2 < 0.4 R3 R1 6
R1 > 0.4, R2 > 0.4, R3 > 0.4 R3 R2 R1 7

Table 2. Required input-output combination of ANFIS

Time unit R3 R2 R1 ANFIS output Resources to be notified
0.0 0.0 0.0 0.0 0 0
0.1 0.2 0.5 0.1 3 R2
0.2 0.4 1.0 0.2 4 R3 R2
0.3 0.6 1.0 0.3 4 R3 R2
0.4 0.8 1.0 0.4 7 R3 R2 R1
0.5 1.0 1.0 0.5 7 R3 R2 R1
0.6 0.8 1.0 0.6 7 R3 R2 R1
0.7 0.6 1.0 0.7 7 R3 R2 R1
0.8 0.4 1.0 0.8 7 R3 R2 R1
0.9 0.2 0.5 0.9 2 R2 R1
1.0 0.0 0.0 1.0 1 R1

The ANFIS structure of the proposed work consists of three inputs R3, R2

and R1, six rules, one output and zero-order Sugeno fuzzy model. The compu-
tational efficiency of Sugeno model is high and is best suited for the devel-
opment of fuzzy inference system from given input-output training data set.
The three inputs to the ANFIS are resource consumption patterns of R3, R2
and R1 and the single output is the code which represents which resource(s)
needs to be notified to the registered client by the server. The cluster heads are
the registered clients and leaf nodes are servers in a clustered tree WSNs.

List of Parameters and Notations: List of parameters and notations used in
ANFIS are listed in Table 3.

51

Nagesha, Sunilkumar S. Manvi

Rules: The fuzzy inference system considered in the proposed work is zero
order Sugeno fuzzy model which has three inputs R3, R2 and R1 and one
output. Fuzzy if-then rules with R3, R2 and R1 as linguistic variables and less,
more as linguistic labels is as given below.

Rule 1: if R3 is less AND R2 is less AND R1 is less then output1 = 0;
Rule 2: if R3 is less AND R2 is less AND R1 is more then output2 = 1;
Rule 3: if R3 is less AND R2 is more AND R1 is less then output3 = 3;
Rule 4: if R3 is less AND R2 is more AND R1 is more then output4 = 2;
Rule 5: if R3 is more AND R2 is more AND R1 is less then output5 = 4;
Rule 6: if R3 is more AND R2 is more AND R1 is more then output6 = 7;

where the output is represented by constant output (singular membership
function).

Table 3. Parameters and notations used in ANFIS

Notation Description
(a,b,c,d) Premise parameter set of membership functions
less, more Linguistic variables
µless(R3), µmore(R3) Membership functions of resource R3
µless(R2), µmore(R2) Membership functions of resource R2
µless(R1), µmore(R1) Membership functions of resource R1
wi firing strength of rule i

iw Normalized firing strength of rule i
Oi

1 i th node output of layer 1
Oi

2 i th node output of layer 2
Oi

3 i th node output of layer 3
Oi

4 i th node output of layer 4
Oi

5 i th node output of layer 5

Membership functions: The reasoning mechanism for the above Sugeno
model is illustrated in the Figure 4. The membership function shown for the
inputs R3, R2 and R1 with the linguistic labels less and more. The corre-
sponding functionally equivalent ANFIS architecture which is a multi-layer
network is shown in the Figure 5.

ANFIS structure: Each layer of the ANFIS performs specific task and nodes
of the particular layer performs similar functions. The layers of the ANFIS are
fuzzification layer, rules layer, normalization layer, defuzzification layer and
output layer. The square represents a adaptive node whereas the circle indi-
cates a fixed node. The output signals from nodes of a layer are fed as inputs
to the next layer as shown in the Figure 5.

50

Resource Monitoring for Wireless Sensor ...

inference system [22] are used to construct the ANFIS which is used to gener-
ate the required input-output data pairs of the proposed work as shown in the
Table 2. The membership functions parameters are tuned using the input-
output training data set and the hybrid learning algorithm (i.e. combination of
back propagation and least squares method).

Table 1. Resource Monitoring Policy

Resources consumed Resources to be notified code
R1 < 0.4, R2 < 0.4, R3 < 0.4 NULL 0
R1 > 0.4, R2 < 0.4, R3 < 0.4 R1 1
R1 > 0.4, R2 > 0.4, R3 < 0.4 R2 R1 2
R2 > 0.4, R1 < 0.4, R3 < 0.4 R2 3
R2 > 0.4, R3 > 0.4, R1 < 0.4 R3 R2 4
R3 > 0.4, R1 < 0.4, R2 < 0.4 R3 ³
R3 > 0.4, R1 > 0.4, R2 < 0.4 R3 R1 6
R1 > 0.4, R2 > 0.4, R3 > 0.4 R3 R2 R1 7

Table 2. Required input-output combination of ANFIS

Time unit R3 R2 R1 ANFIS output Resources to be notified
0.0 0.0 0.0 0.0 0 0
0.1 0.2 0.5 0.1 3 R2
0.2 0.4 1.0 0.2 4 R3 R2
0.3 0.6 1.0 0.3 4 R3 R2
0.4 0.8 1.0 0.4 7 R3 R2 R1
0.5 1.0 1.0 0.5 7 R3 R2 R1
0.6 0.8 1.0 0.6 7 R3 R2 R1
0.7 0.6 1.0 0.7 7 R3 R2 R1
0.8 0.4 1.0 0.8 7 R3 R2 R1
0.9 0.2 0.5 0.9 2 R2 R1
1.0 0.0 0.0 1.0 1 R1

The ANFIS structure of the proposed work consists of three inputs R3, R2

and R1, six rules, one output and zero-order Sugeno fuzzy model. The compu-
tational efficiency of Sugeno model is high and is best suited for the devel-
opment of fuzzy inference system from given input-output training data set.
The three inputs to the ANFIS are resource consumption patterns of R3, R2
and R1 and the single output is the code which represents which resource(s)
needs to be notified to the registered client by the server. The cluster heads are
the registered clients and leaf nodes are servers in a clustered tree WSNs.

List of Parameters and Notations: List of parameters and notations used in
ANFIS are listed in Table 3.

51

Nagesha, Sunilkumar S. Manvi

Rules: The fuzzy inference system considered in the proposed work is zero
order Sugeno fuzzy model which has three inputs R3, R2 and R1 and one
output. Fuzzy if-then rules with R3, R2 and R1 as linguistic variables and less,
more as linguistic labels is as given below.

Rule 1: if R3 is less AND R2 is less AND R1 is less then output1 = 0;
Rule 2: if R3 is less AND R2 is less AND R1 is more then output2 = 1;
Rule 3: if R3 is less AND R2 is more AND R1 is less then output3 = 3;
Rule 4: if R3 is less AND R2 is more AND R1 is more then output4 = 2;
Rule 5: if R3 is more AND R2 is more AND R1 is less then output5 = 4;
Rule 6: if R3 is more AND R2 is more AND R1 is more then output6 = 7;

where the output is represented by constant output (singular membership
function).

Table 3. Parameters and notations used in ANFIS

Notation Description
(a,b,c,d) Premise parameter set of membership functions
less, more Linguistic variables
µless(R3), µmore(R3) Membership functions of resource R3
µless(R2), µmore(R2) Membership functions of resource R2
µless(R1), µmore(R1) Membership functions of resource R1
wi firing strength of rule i

iw Normalized firing strength of rule i
Oi

1 i th node output of layer 1
Oi

2 i th node output of layer 2
Oi

3 i th node output of layer 3
Oi

4 i th node output of layer 4
Oi

5 i th node output of layer 5

Membership functions: The reasoning mechanism for the above Sugeno
model is illustrated in the Figure 4. The membership function shown for the
inputs R3, R2 and R1 with the linguistic labels less and more. The corre-
sponding functionally equivalent ANFIS architecture which is a multi-layer
network is shown in the Figure 5.

ANFIS structure: Each layer of the ANFIS performs specific task and nodes
of the particular layer performs similar functions. The layers of the ANFIS are
fuzzification layer, rules layer, normalization layer, defuzzification layer and
output layer. The square represents a adaptive node whereas the circle indi-
cates a fixed node. The output signals from nodes of a layer are fed as inputs
to the next layer as shown in the Figure 5.

52

Resource Monitoring for Wireless Sensor ...

Figure 4. Membership functions

Layer 1: This layer is called the fuzzification layer which fuzzifies the inputs
R3, R2 and R1. Nodes of this layer are adaptive nodes with node function
O1

1 = µless (R3)
O2

1 = µmore (R3)
O3

1 = µless (R2)
O4

1 = µmore (R2)
O5

1 = µless (R1)
O6

1 = µmore (R1)
where R3, R2 and R1 are inputs to the nodes at this layer and less/more is the
linguistic label associated with the node function. In general, Oi

1 (the function
of the ith node) is the membership function of less/more and it specifies the
degree to which the given input (R3/R2/R1) satisfies the quantifier less/more.
We choose the membership function to be trapezoidal in shape
 trap(x:a,b,c,d) = max(min((x-a) / (b-a),1,(d-x) / (d-c)),0) (1)

where {a,b,c,d} is the premise parameter set (with a < b <= c < d) which de-
termines the x coordinates of the four corners of the trapezoidal membership

53

Nagesha, Sunilkumar S. Manvi

functions. The change in the values of these parameters varies the trapezoidal
function accordingly and produce various forms of the membership functions.

Figure 5. ANFIS structure

Layer 2: This layer is called the rules layer. All nodes of this layer are fixed
nodes (represented by π) and performs similar functions. The inputs of each
node are connected by the intersection operator (fuzzy AND) as shown in the
if-then rules. The output of each node is the product of all its incoming sig-
nals. Six nodes are used to implement six rules whose outputs are as follows.
O1

2 = µless(R3) x µless(R2) x µless(R1)
O2

2 = µless(R3) x µless(R2) x µmore(R1)
O3

2 = µless(R3) x µmore(R2) x µless(R1)
O4

2 = µless(R3) x µmore(R2) x µmore(R1)
O5

2 = µmore(R3) x µmore(R2) x µless(R1)
O6

2 = µmore(R3) x µmore(R2) x µmore(R1)
µless(R3), µmore(R3), µless(R2), µmore(R2), µless(R1), and µmore(R1)
are fuzzified inputs to the nodes of the rules layer as shown in the Figure 5.
The output of each node represents the firing strength of the rule.
Layer 3: Nodes in this layer are fixed nodes and they are represented by N.
The nodes output of this layer are called the normalized firing strengths. The
ith node function is to calculate the ratio of firing strength of the rule i to the
sum of firing strengths of all rules.

52

Resource Monitoring for Wireless Sensor ...

Figure 4. Membership functions

Layer 1: This layer is called the fuzzification layer which fuzzifies the inputs
R3, R2 and R1. Nodes of this layer are adaptive nodes with node function
O1

1 = µless (R3)
O2

1 = µmore (R3)
O3

1 = µless (R2)
O4

1 = µmore (R2)
O5

1 = µless (R1)
O6

1 = µmore (R1)
where R3, R2 and R1 are inputs to the nodes at this layer and less/more is the
linguistic label associated with the node function. In general, Oi

1 (the function
of the ith node) is the membership function of less/more and it specifies the
degree to which the given input (R3/R2/R1) satisfies the quantifier less/more.
We choose the membership function to be trapezoidal in shape
 trap(x:a,b,c,d) = max(min((x-a) / (b-a),1,(d-x) / (d-c)),0) (1)

where {a,b,c,d} is the premise parameter set (with a < b <= c < d) which de-
termines the x coordinates of the four corners of the trapezoidal membership

53

Nagesha, Sunilkumar S. Manvi

functions. The change in the values of these parameters varies the trapezoidal
function accordingly and produce various forms of the membership functions.

Figure 5. ANFIS structure

Layer 2: This layer is called the rules layer. All nodes of this layer are fixed
nodes (represented by π) and performs similar functions. The inputs of each
node are connected by the intersection operator (fuzzy AND) as shown in the
if-then rules. The output of each node is the product of all its incoming sig-
nals. Six nodes are used to implement six rules whose outputs are as follows.
O1

2 = µless(R3) x µless(R2) x µless(R1)
O2

2 = µless(R3) x µless(R2) x µmore(R1)
O3

2 = µless(R3) x µmore(R2) x µless(R1)
O4

2 = µless(R3) x µmore(R2) x µmore(R1)
O5

2 = µmore(R3) x µmore(R2) x µless(R1)
O6

2 = µmore(R3) x µmore(R2) x µmore(R1)
µless(R3), µmore(R3), µless(R2), µmore(R2), µless(R1), and µmore(R1)
are fuzzified inputs to the nodes of the rules layer as shown in the Figure 5.
The output of each node represents the firing strength of the rule.
Layer 3: Nodes in this layer are fixed nodes and they are represented by N.
The nodes output of this layer are called the normalized firing strengths. The
ith node function is to calculate the ratio of firing strength of the rule i to the
sum of firing strengths of all rules.

54

Resource Monitoring for Wireless Sensor ...

 6

1k
k

i
i

w

w
w (2)

where i = 1,2,3,4,5,6
Layer 4: Nodes of this layer are adaptive nodes with a node function

 Oi
4 = iw * fi = iw * constant (3)

where w i is the normalized firing strength.
Layer 5: The only node in this layer is a fixed node (represented by ∑)
which computes the overall output as the sum of all the incoming signals.

 Oi
5 =

6

1i
w i fi =

6

1

6

1

i
i

i
i

i

w

fw
 (4)

The learning mechanism has to tune only the premise parameters to fine
tune the membership functions. In the proposed work, the ANFIS is modelled
as zero-order Sugeno fuzzy inference system and there is no consequent pa-
rameter set.

ANFIS input-output training data: The range of three inputs R3, R2 and R1
is from 0.0 to 1.0 which corresponds to 0% to 100% of the resource consumed
and the output code is from 0 to 7 which corresponds to the resources to be
notified to registered client like cluster head.The ANFIS input-output training
data set is prepared as follows. The resources R3 and R2 are fixed at 0.0 and
R1 is varied from 0.0 to 1.0 in steps of 0.1. Then R2 is changed (keeping R3
same) to 0.1 and R1 is varied again from 0.0 to 1.0 in steps of 0.1. This is
repeated by changing R2 (keeping R3 same) in steps of 0.1 upto 1.0. Now R3
is changed to 0.1 (with R2 = R1 = 0) and the above procedure is repeated. The
R3 is changed upto 1.0 in steps of 0.1 and the procedure is repeated for every
incremental value of R3. The output code for the combination of R3, R2 and
R1 consumption levels is in accordance with the Table 2. Part of the training
data with R3 = 0.3 is shown in the Table 4.

4.4 Pushing monitoring data from sensor nodes to sink using CoAP's
observe option

This Resource Monitoring application uses CoAP's observe option to push the
monitoring data from sensor nodes to sink. This is done at three levels. (1)
Sensor node level (2) Cluster level (3) Network level. The clustered tree net-
work structure is considered in the proposed work and is as shown in the Fig-
ure 6. The tree like structure is considered for simplicity, although the IPv6

55

Nagesha, Sunilkumar S. Manvi

routing protocol allows for each sensor node to have multiple parents when
the node's connectivity supports it.

Figure 6. Clustered Tree Network

Sensor node level: At this level, the single sensor node which serves as a
server (has resource monitored data) connected with the sink which is a client.
The client registers to the server its interest in resources R3, R2 and R1 using
an extended GET request (i.e. with observe option). The server sends notifica-
tion to the client as indicated in Table 2 and resource consumption patterns in
Figure 3.
Cluster level: The cluster head is a special node which is rich in resources
and capabilities (e.g. routing) compared to sensor nodes. Sensor nodes are
connected to cluster head to form star network inside the cluster. The cluster
head (client) registers its interest in resources R1, R2 and R3 by initiating an
extended GET request (i.e. with observe option) to all sensor nodes (servers)

54

Resource Monitoring for Wireless Sensor ...

 6

1k
k

i
i

w

w
w (2)

where i = 1,2,3,4,5,6
Layer 4: Nodes of this layer are adaptive nodes with a node function

 Oi
4 = iw * fi = iw * constant (3)

where w i is the normalized firing strength.
Layer 5: The only node in this layer is a fixed node (represented by ∑)
which computes the overall output as the sum of all the incoming signals.

 Oi
5 =

6

1i
w i fi =

6

1

6

1

i
i

i
i

i

w

fw
 (4)

The learning mechanism has to tune only the premise parameters to fine
tune the membership functions. In the proposed work, the ANFIS is modelled
as zero-order Sugeno fuzzy inference system and there is no consequent pa-
rameter set.

ANFIS input-output training data: The range of three inputs R3, R2 and R1
is from 0.0 to 1.0 which corresponds to 0% to 100% of the resource consumed
and the output code is from 0 to 7 which corresponds to the resources to be
notified to registered client like cluster head.The ANFIS input-output training
data set is prepared as follows. The resources R3 and R2 are fixed at 0.0 and
R1 is varied from 0.0 to 1.0 in steps of 0.1. Then R2 is changed (keeping R3
same) to 0.1 and R1 is varied again from 0.0 to 1.0 in steps of 0.1. This is
repeated by changing R2 (keeping R3 same) in steps of 0.1 upto 1.0. Now R3
is changed to 0.1 (with R2 = R1 = 0) and the above procedure is repeated. The
R3 is changed upto 1.0 in steps of 0.1 and the procedure is repeated for every
incremental value of R3. The output code for the combination of R3, R2 and
R1 consumption levels is in accordance with the Table 2. Part of the training
data with R3 = 0.3 is shown in the Table 4.

4.4 Pushing monitoring data from sensor nodes to sink using CoAP's
observe option

This Resource Monitoring application uses CoAP's observe option to push the
monitoring data from sensor nodes to sink. This is done at three levels. (1)
Sensor node level (2) Cluster level (3) Network level. The clustered tree net-
work structure is considered in the proposed work and is as shown in the Fig-
ure 6. The tree like structure is considered for simplicity, although the IPv6

55

Nagesha, Sunilkumar S. Manvi

routing protocol allows for each sensor node to have multiple parents when
the node's connectivity supports it.

Figure 6. Clustered Tree Network

Sensor node level: At this level, the single sensor node which serves as a
server (has resource monitored data) connected with the sink which is a client.
The client registers to the server its interest in resources R3, R2 and R1 using
an extended GET request (i.e. with observe option). The server sends notifica-
tion to the client as indicated in Table 2 and resource consumption patterns in
Figure 3.
Cluster level: The cluster head is a special node which is rich in resources
and capabilities (e.g. routing) compared to sensor nodes. Sensor nodes are
connected to cluster head to form star network inside the cluster. The cluster
head (client) registers its interest in resources R1, R2 and R3 by initiating an
extended GET request (i.e. with observe option) to all sensor nodes (servers)

56

Resource Monitoring for Wireless Sensor ...

Table 4. ANFIS Training Data
R3 R2 R1 o/p R3 R2 R1 o/p R3 R2 R1 o/p
0.3 0.0 0.0 0 0.3 0.3 0.7 1 0.3 0.7 0.3 3
0.3 0.0 0.1 0 0.3 0.3 0.8 1 0.3 0.7 0.4 2
0.3 0.0 0.2 0 0.3 0.3 0.9 1 0.3 0.7 0.5 2
0.3 0.0 0.3 0 0.3 0.3 1.0 1 0.3 0.7 0.6 2
0.3 0.0 0.4 1 0.3 0.4 0.0 3 0.3 0.7 0.7 2
0.3 0.0 0.5 1 0.3 0.4 0.1 3 0.3 0.7 0.8 2
0.3 0.0 0.6 1 0.3 0.4 0.2 3 0.3 0.7 0.9 2
0.3 0.0 0.7 1 0.3 0.4 0.3 3 0.3 0.7 1.0 2
0.3 0.0 0.8 1 0.3 0.4 0.4 2 0.3 0.8 0.0 3
0.3 0.0 0.9 1 0.3 0.4 0.5 2 0.3 0.8 0.1 3
0.3 0.0 1.0 1 0.3 0.4 0.6 2 0.3 0.8 0.2 3
0.3 0.1 0.0 0 0.3 0.4 0.7 2 0.3 0.8 0.3 3
0.3 0.1 0.1 0 0.3 0.4 0.8 2 0.3 0.8 0.4 2
0.3 0.1 0.2 0 0.3 0.4 0.9 2 0.3 0.8 0.5 2
0.3 0.1 0.3 0 0.3 0.4 1.0 2 0.3 0.8 0.6 2
0.3 0.1 0.4 1 0.3 0.5 0.0 3 0.3 0.8 0.7 2
0.3 0.1 0.5 1 0.3 0.5 0.1 3 0.3 0.8 0.8 2
0.3 0.1 0.6 1 0.3 0.5 0.2 3 0.3 0.8 0.9 2
0.3 0.1 0.7 1 0.3 0.5 0.3 3 0.3 0.8 1.0 2
0.3 0.1 0.8 1 0.3 0.5 0.4 2 0.3 0.9 0.0 3
0.3 0.1 0.9 1 0.3 0.5 0.5 2 0.3 0.9 0.1 3
0.3 0.1 1.0 1 0.3 0.5 0.6 2 0.3 0.9 0.2 3
0.3 0.2 0.0 0 0.3 0.5 0.7 2 0.3 0.9 0.3 3
0.3 0.2 0.1 0 0.3 0.5 0.8 2 0.3 0.9 0.4 2
0.3 0.2 0.2 0 0.3 0.5 0.9 2 0.3 0.9 0.5 2
0.3 0.2 0.3 0 0.3 0.5 1.0 2 0.3 0.9 0.6 2
0.3 0.2 0.4 1 0.3 0.6 0.0 3 0.3 0.9 0.7 2
0.3 0.2 0.5 1 0.3 0.6 0.1 3 0.3 0.9 0.8 2
0.3 0.2 0.6 1 0.3 0.6 0.2 3 0.3 0.9 0.9 2
0.3 0.2 0.7 1 0.3 0.6 0.3 3 0.3 0.9 1.0 2
0.3 0.2 0.8 1 0.3 0.6 0.4 2 0.3 1.0 0.0 3
0.3 0.2 0.9 1 0.3 0.6 0.5 2 0.3 1.0 0.1 3
0.3 0.2 1.0 1 0.3 0.6 0.6 2 0.3 1.0 0.2 3
0.3 0.3 0.0 0 0.3 0.6 0.7 2 0.3 1.0 0.3 3
0.3 0.3 0.1 0 0.3 0.6 0.8 2 0.3 1.0 0.4 2
0.3 0.3 0.2 0 0.3 0.6 0.9 2 0.3 1.0 0.5 2
0.3 0.3 0.3 0 0.3 0.6 1.0 2 0.3 1.0 0.6 2
0.3 0.3 0.4 1 0.3 0.7 0.0 3 0.3 1.0 0.7 2
0.3 0.3 0.5 1 0.3 0.7 0.1 3 0.3 1.0 0.8 2
0.3 0.3 0.6 1 0.3 0.7 0.2 3 0.3 1.0 0.9 2
Contd. Contd. 0.3 1.0 1.0 2

57

Nagesha, Sunilkumar S. Manvi

in the cluster. Sink (client) registers its interest in resources R1, R2 and R3 of
all sensor nodes of cluster by initiating a extended GET request to the cluster
head (acts as server to the sink).

Network level: In the hierarchical tree structure shown in the Figure 6, the
sink is at depth 0, and clusters are arranged at different depths 1, 2, 3, ..., n.
The cluster head acts as client for sensor nodes inside its cluster and server for
cluster head of upper cluster head and acts as client of lower cluster head.

5 Simulation, Results and Analysis

5.1 Simulation Environment

Matlab 7 (R2010a) and its fuzzy logic tool box is used to simulate the ANFIS
to generate the membership functions and rules from the training data. We
have reduced the ANFIS generated rules from eight to six. The GUI tool an-
fisedit is used in the simulation process. ANFIS is trained using hybrid learn-
ing algorithm.

The sensor node, cluster head, and network environment is simulated using
the Java programming language and CoAP with observe option used for
transporting resources information is implemented using the Californium
(CoAP framework).

5.2 Node level

Simulation: The sensor node is equipped with ANFIS model. The ANFIS
model consists of 25 nodes, three inputs (R3, R2 and R1), six membership
functions, six rules and one output. It is trained with 1,331 pairs of input and
output training data (Table 4). The parameters (a,b,c,d) of trapezoidal mem-
bership functions (two membership functions for each input) µless(R3),
µmore(R3), µless(R2), µmore(R2), µless(R1) and µmore(R1) are (-0.7, -0.3, 0.14,
0.39), (0.3, 0.54, 1.3, 1.7), (-0.7, -0.3, 0.14, 0.39), (0.3, 0.54, 1.3, 1.7), (-0.7, -
0.3, 0.14, 0.39) and (0.3, 0.54, 1.3, 1.7) respectively. The only output of the
ANFIS (Table 2) is the coded output which indicates which resources needs to
be pushed (notified) to the client.

The sensor node which has resources to be monitored acts as a server and
the sink acts as the client. The registration by the client and subsequent notifi-
cations by the server is as shown in the Figure 7. The client uses the GET
request with observe option of the CoAP (extended GET) for registration
(observe = 0). After registration how communication happens between client

56

Resource Monitoring for Wireless Sensor ...

Table 4. ANFIS Training Data
R3 R2 R1 o/p R3 R2 R1 o/p R3 R2 R1 o/p
0.3 0.0 0.0 0 0.3 0.3 0.7 1 0.3 0.7 0.3 3
0.3 0.0 0.1 0 0.3 0.3 0.8 1 0.3 0.7 0.4 2
0.3 0.0 0.2 0 0.3 0.3 0.9 1 0.3 0.7 0.5 2
0.3 0.0 0.3 0 0.3 0.3 1.0 1 0.3 0.7 0.6 2
0.3 0.0 0.4 1 0.3 0.4 0.0 3 0.3 0.7 0.7 2
0.3 0.0 0.5 1 0.3 0.4 0.1 3 0.3 0.7 0.8 2
0.3 0.0 0.6 1 0.3 0.4 0.2 3 0.3 0.7 0.9 2
0.3 0.0 0.7 1 0.3 0.4 0.3 3 0.3 0.7 1.0 2
0.3 0.0 0.8 1 0.3 0.4 0.4 2 0.3 0.8 0.0 3
0.3 0.0 0.9 1 0.3 0.4 0.5 2 0.3 0.8 0.1 3
0.3 0.0 1.0 1 0.3 0.4 0.6 2 0.3 0.8 0.2 3
0.3 0.1 0.0 0 0.3 0.4 0.7 2 0.3 0.8 0.3 3
0.3 0.1 0.1 0 0.3 0.4 0.8 2 0.3 0.8 0.4 2
0.3 0.1 0.2 0 0.3 0.4 0.9 2 0.3 0.8 0.5 2
0.3 0.1 0.3 0 0.3 0.4 1.0 2 0.3 0.8 0.6 2
0.3 0.1 0.4 1 0.3 0.5 0.0 3 0.3 0.8 0.7 2
0.3 0.1 0.5 1 0.3 0.5 0.1 3 0.3 0.8 0.8 2
0.3 0.1 0.6 1 0.3 0.5 0.2 3 0.3 0.8 0.9 2
0.3 0.1 0.7 1 0.3 0.5 0.3 3 0.3 0.8 1.0 2
0.3 0.1 0.8 1 0.3 0.5 0.4 2 0.3 0.9 0.0 3
0.3 0.1 0.9 1 0.3 0.5 0.5 2 0.3 0.9 0.1 3
0.3 0.1 1.0 1 0.3 0.5 0.6 2 0.3 0.9 0.2 3
0.3 0.2 0.0 0 0.3 0.5 0.7 2 0.3 0.9 0.3 3
0.3 0.2 0.1 0 0.3 0.5 0.8 2 0.3 0.9 0.4 2
0.3 0.2 0.2 0 0.3 0.5 0.9 2 0.3 0.9 0.5 2
0.3 0.2 0.3 0 0.3 0.5 1.0 2 0.3 0.9 0.6 2
0.3 0.2 0.4 1 0.3 0.6 0.0 3 0.3 0.9 0.7 2
0.3 0.2 0.5 1 0.3 0.6 0.1 3 0.3 0.9 0.8 2
0.3 0.2 0.6 1 0.3 0.6 0.2 3 0.3 0.9 0.9 2
0.3 0.2 0.7 1 0.3 0.6 0.3 3 0.3 0.9 1.0 2
0.3 0.2 0.8 1 0.3 0.6 0.4 2 0.3 1.0 0.0 3
0.3 0.2 0.9 1 0.3 0.6 0.5 2 0.3 1.0 0.1 3
0.3 0.2 1.0 1 0.3 0.6 0.6 2 0.3 1.0 0.2 3
0.3 0.3 0.0 0 0.3 0.6 0.7 2 0.3 1.0 0.3 3
0.3 0.3 0.1 0 0.3 0.6 0.8 2 0.3 1.0 0.4 2
0.3 0.3 0.2 0 0.3 0.6 0.9 2 0.3 1.0 0.5 2
0.3 0.3 0.3 0 0.3 0.6 1.0 2 0.3 1.0 0.6 2
0.3 0.3 0.4 1 0.3 0.7 0.0 3 0.3 1.0 0.7 2
0.3 0.3 0.5 1 0.3 0.7 0.1 3 0.3 1.0 0.8 2
0.3 0.3 0.6 1 0.3 0.7 0.2 3 0.3 1.0 0.9 2
Contd. Contd. 0.3 1.0 1.0 2

57

Nagesha, Sunilkumar S. Manvi

in the cluster. Sink (client) registers its interest in resources R1, R2 and R3 of
all sensor nodes of cluster by initiating a extended GET request to the cluster
head (acts as server to the sink).

Network level: In the hierarchical tree structure shown in the Figure 6, the
sink is at depth 0, and clusters are arranged at different depths 1, 2, 3, ..., n.
The cluster head acts as client for sensor nodes inside its cluster and server for
cluster head of upper cluster head and acts as client of lower cluster head.

5 Simulation, Results and Analysis

5.1 Simulation Environment

Matlab 7 (R2010a) and its fuzzy logic tool box is used to simulate the ANFIS
to generate the membership functions and rules from the training data. We
have reduced the ANFIS generated rules from eight to six. The GUI tool an-
fisedit is used in the simulation process. ANFIS is trained using hybrid learn-
ing algorithm.

The sensor node, cluster head, and network environment is simulated using
the Java programming language and CoAP with observe option used for
transporting resources information is implemented using the Californium
(CoAP framework).

5.2 Node level

Simulation: The sensor node is equipped with ANFIS model. The ANFIS
model consists of 25 nodes, three inputs (R3, R2 and R1), six membership
functions, six rules and one output. It is trained with 1,331 pairs of input and
output training data (Table 4). The parameters (a,b,c,d) of trapezoidal mem-
bership functions (two membership functions for each input) µless(R3),
µmore(R3), µless(R2), µmore(R2), µless(R1) and µmore(R1) are (-0.7, -0.3, 0.14,
0.39), (0.3, 0.54, 1.3, 1.7), (-0.7, -0.3, 0.14, 0.39), (0.3, 0.54, 1.3, 1.7), (-0.7, -
0.3, 0.14, 0.39) and (0.3, 0.54, 1.3, 1.7) respectively. The only output of the
ANFIS (Table 2) is the coded output which indicates which resources needs to
be pushed (notified) to the client.

The sensor node which has resources to be monitored acts as a server and
the sink acts as the client. The registration by the client and subsequent notifi-
cations by the server is as shown in the Figure 7. The client uses the GET
request with observe option of the CoAP (extended GET) for registration
(observe = 0). After registration how communication happens between client

58

Resource Monitoring for Wireless Sensor ...

and server using token, observe option, response code and payload is already
explained under protocol stack. The Figure 7 is simplified version of Figure 2.

All the assumed resources consumption patterns are as shown in the Figure
3. After registration from the client, the server sends the notifications (which
are based on Table 2) for every 0.1 time unit up to 1.0 time unit as shown in
the Table 2. The detailed notifications for one complete cycle of resources
consumption patterns are shown in the Figure 7. The payload of the notifica-
tion is the resources consumption level which may be just any one resource
level (R3 or R2 or R1) or combination of any two or all three resources level
as shown in the notifications.

The frequency of resource monitoring data movement from the sensor
nodes to the sink depends on the magnitude of the resources of the sensor
node and resources consumption patterns. The time unit may vary from net-
work to network.

Figure 7. Interaction between node and sink

Results and Analysis: Resources consumption level cannot be sent in % as
the network may have heterogeneous sensor nodes which have different size

59

Nagesha, Sunilkumar S. Manvi

of memory, processor with different speed and capabilities etc. Let us assume
that each resource consumption level indication needs 4 bytes. Then for three
resources, 12 bytes required. These resources consumption level is notified to
the client for every 0.1 time unit. The complete cycle of one time unit then
needs 12 x 10 = 120 bytes of transmission to client. Instead of notifying all
three resources to the client (EMP, periodic reporting), the ANFIS decides
which resources level needs to be notified to the client based data provided in
the Table 2. For the assumed resources consumption pattern (Figure 3), the
resources need to be notified is already shown in the Figure 7. The number of
bytes to be transmitted for one cycle is graphically shown in the Figure 8(a).
Total number of bytes needs to be transmitted is 92 bytes which is 23% less
compared to notifying all resources consumption level. This clearly indicates
a 23% less consumption of energy by the sensor node and 23% less band-
width required for the transmission of resource monitoring data. Here the
saving of sensor node energy and required bandwidth is only indicative and
vary based on resource consumption pattern.

The query processing used in LNMP demands a query request from the
client for every fetch of resources information. The CoAP protocol consumes
16 bytes for (ignoring the headers from other layers) a query request. We need
to query the server 10 times for one complete cycle. A one complete cycle
demand the transmission of 12x10 + 16x10 = 280 bytes (includes both request
and response) which is 67% higher compared to our work. Hence, the saving
of 67% energy and 67% less bandwidth requirement for the transport of re-
source monitoring data at the node level when ANFIS and CoAP is used.

The radio model of IEEE 802.15.4 standard approximately consumes
200nJ/bit (based on products survey) and 1600nJ/byte for transmission or
reception. Figure 8(b) shows the comparison of energy consumption in
LNMP, EMP and ANFIS when used for resource monitoring for 10 time
units. The graph clearly shows the energy saving (in sensor node with ANFIS
and CoAP) of 23% when compared to EMP and 67% when compared to
LNMP.

5.3 Cluster level

Simulation: Let us consider the cluster of sensor nodes with one special node
which functions as cluster head. All sensor nodes are similar and equipped
with the ANFIS as described in the node level section. The resources con-
sumption in all sensor nodes is assumed to be same. In the Figure 6 shown,
there are seven sensor nodes which are wirelessly connected to the cluster
head which in turn wirelessly connected to the sink. The sink which needs
resource monitoring data of all the sensor nodes registers itself as a client to
the cluster head which acts as server capable of feeding the monitoring data of
all sensor nodes to the sink. The cluster head registers as client to all sensor

58

Resource Monitoring for Wireless Sensor ...

and server using token, observe option, response code and payload is already
explained under protocol stack. The Figure 7 is simplified version of Figure 2.

All the assumed resources consumption patterns are as shown in the Figure
3. After registration from the client, the server sends the notifications (which
are based on Table 2) for every 0.1 time unit up to 1.0 time unit as shown in
the Table 2. The detailed notifications for one complete cycle of resources
consumption patterns are shown in the Figure 7. The payload of the notifica-
tion is the resources consumption level which may be just any one resource
level (R3 or R2 or R1) or combination of any two or all three resources level
as shown in the notifications.

The frequency of resource monitoring data movement from the sensor
nodes to the sink depends on the magnitude of the resources of the sensor
node and resources consumption patterns. The time unit may vary from net-
work to network.

Figure 7. Interaction between node and sink

Results and Analysis: Resources consumption level cannot be sent in % as
the network may have heterogeneous sensor nodes which have different size

59

Nagesha, Sunilkumar S. Manvi

of memory, processor with different speed and capabilities etc. Let us assume
that each resource consumption level indication needs 4 bytes. Then for three
resources, 12 bytes required. These resources consumption level is notified to
the client for every 0.1 time unit. The complete cycle of one time unit then
needs 12 x 10 = 120 bytes of transmission to client. Instead of notifying all
three resources to the client (EMP, periodic reporting), the ANFIS decides
which resources level needs to be notified to the client based data provided in
the Table 2. For the assumed resources consumption pattern (Figure 3), the
resources need to be notified is already shown in the Figure 7. The number of
bytes to be transmitted for one cycle is graphically shown in the Figure 8(a).
Total number of bytes needs to be transmitted is 92 bytes which is 23% less
compared to notifying all resources consumption level. This clearly indicates
a 23% less consumption of energy by the sensor node and 23% less band-
width required for the transmission of resource monitoring data. Here the
saving of sensor node energy and required bandwidth is only indicative and
vary based on resource consumption pattern.

The query processing used in LNMP demands a query request from the
client for every fetch of resources information. The CoAP protocol consumes
16 bytes for (ignoring the headers from other layers) a query request. We need
to query the server 10 times for one complete cycle. A one complete cycle
demand the transmission of 12x10 + 16x10 = 280 bytes (includes both request
and response) which is 67% higher compared to our work. Hence, the saving
of 67% energy and 67% less bandwidth requirement for the transport of re-
source monitoring data at the node level when ANFIS and CoAP is used.

The radio model of IEEE 802.15.4 standard approximately consumes
200nJ/bit (based on products survey) and 1600nJ/byte for transmission or
reception. Figure 8(b) shows the comparison of energy consumption in
LNMP, EMP and ANFIS when used for resource monitoring for 10 time
units. The graph clearly shows the energy saving (in sensor node with ANFIS
and CoAP) of 23% when compared to EMP and 67% when compared to
LNMP.

5.3 Cluster level

Simulation: Let us consider the cluster of sensor nodes with one special node
which functions as cluster head. All sensor nodes are similar and equipped
with the ANFIS as described in the node level section. The resources con-
sumption in all sensor nodes is assumed to be same. In the Figure 6 shown,
there are seven sensor nodes which are wirelessly connected to the cluster
head which in turn wirelessly connected to the sink. The sink which needs
resource monitoring data of all the sensor nodes registers itself as a client to
the cluster head which acts as server capable of feeding the monitoring data of
all sensor nodes to the sink. The cluster head registers as client to all sensor

60

Resource Monitoring for Wireless Sensor ...

nodes separately for requesting monitoring data. The process of registration
and resource monitoring data movement from sensor nodes to cluster head
and then from cluster head to sink is shown in the Figure 9. The details of
process of registration by the client and notifications from the server are ex-
actly same as details presented in the node level section.

(a) Bandwidth

(b) Energy

Figure 8. Performance at node level

61

Nagesha, Sunilkumar S. Manvi

The notifications from the sensor node (servers) at 0.1 unit time is collect-
ed by the cluster head (acts as client) and all these notifications are sent by
cluster head (acts as server) to sink (client) in a single packet. Subsequent
notifications from the sensor nodes at 0.2, 0.3, 0.4, ..., 0.9 and 1.0 time unit is
collected by the cluster head (client) and sent to the sink in sequence as shown
in the Figure 9.
Results and Analysis: The total number of bytes required to send all re-
sources monitoring data (R3, R2, R1) of all sensor nodes in a cluster from the
cluster head to the sink is 7 sensors x 3 resources x 4 bytes/resource x 10
times/cycle = 840 bytes. The sensor nodes equipped with ANFIS are capable
of deciding which resources consumption level needs to be sent to the cluster
head. The Figure 10(a) indicates how many bytes needs to be transmitted for
one complete cycle of consumption pattern of resources R3, R2, R1. At 0.1
time unit, only R2 of all sensor nodes is sent to cluster head which is 7 sensor
nodes x 1 resource x 4 bytes = 28 bytes. For one complete cycle of resources
consumption pattern, the total number of bytes received by the cluster head
from all sensor nodes together is 644 bytes which is sent to sink.

This is approximately 23% less compared to 840 bytes (EMP, periodic re-
porting) which indicates 23% saving in energy consumption and bandwidth
requirement for transporting monitoring data from cluster head to the sink.

The resources information of sensor nodes reaches the sink in two hops.
There is a 23% saving of energy and bandwidth for each hop.

The query processing used in LNMP demands the transmission of (84
bytes x 10 times + 16 bytes x 10 times x 7 sensors) = 1960 bytes which is
67% more compare to our work. Hence, the saving of 67% energy and band-
width for each hop.

Figure 10(b) shows the comparison of energy consumption in LNMP,
EMP and ANFIS when used for resource monitoring for 10 time units and one
hop (cluster head to sink). The graph clearly shows the energy saving of 23\%
when compared to EMP and 67\% when compared to LNMP.

60

Resource Monitoring for Wireless Sensor ...

nodes separately for requesting monitoring data. The process of registration
and resource monitoring data movement from sensor nodes to cluster head
and then from cluster head to sink is shown in the Figure 9. The details of
process of registration by the client and notifications from the server are ex-
actly same as details presented in the node level section.

(a) Bandwidth

(b) Energy

Figure 8. Performance at node level

61

Nagesha, Sunilkumar S. Manvi

The notifications from the sensor node (servers) at 0.1 unit time is collect-
ed by the cluster head (acts as client) and all these notifications are sent by
cluster head (acts as server) to sink (client) in a single packet. Subsequent
notifications from the sensor nodes at 0.2, 0.3, 0.4, ..., 0.9 and 1.0 time unit is
collected by the cluster head (client) and sent to the sink in sequence as shown
in the Figure 9.
Results and Analysis: The total number of bytes required to send all re-
sources monitoring data (R3, R2, R1) of all sensor nodes in a cluster from the
cluster head to the sink is 7 sensors x 3 resources x 4 bytes/resource x 10
times/cycle = 840 bytes. The sensor nodes equipped with ANFIS are capable
of deciding which resources consumption level needs to be sent to the cluster
head. The Figure 10(a) indicates how many bytes needs to be transmitted for
one complete cycle of consumption pattern of resources R3, R2, R1. At 0.1
time unit, only R2 of all sensor nodes is sent to cluster head which is 7 sensor
nodes x 1 resource x 4 bytes = 28 bytes. For one complete cycle of resources
consumption pattern, the total number of bytes received by the cluster head
from all sensor nodes together is 644 bytes which is sent to sink.

This is approximately 23% less compared to 840 bytes (EMP, periodic re-
porting) which indicates 23% saving in energy consumption and bandwidth
requirement for transporting monitoring data from cluster head to the sink.

The resources information of sensor nodes reaches the sink in two hops.
There is a 23% saving of energy and bandwidth for each hop.

The query processing used in LNMP demands the transmission of (84
bytes x 10 times + 16 bytes x 10 times x 7 sensors) = 1960 bytes which is
67% more compare to our work. Hence, the saving of 67% energy and band-
width for each hop.

Figure 10(b) shows the comparison of energy consumption in LNMP,
EMP and ANFIS when used for resource monitoring for 10 time units and one
hop (cluster head to sink). The graph clearly shows the energy saving of 23\%
when compared to EMP and 67\% when compared to LNMP.

62

Resource Monitoring for Wireless Sensor ...

Figure 9. Interaction between sensor nodes, cluster head and sink

63

Nagesha, Sunilkumar S. Manvi

(a) Bandwidth

(b) Energy

Figure 10. Performance at cluster level

5.4 Network level

Analysis: By using the ANFIS, the transmission of resource monitoring data
from sensor node to cluster head is reduced from 120 bytes/time unit (EMP,
periodic reporting) into 92 bytes/time unit. The network of n sensor nodes
with ANFIS in each node reduces the need of transmitting 120 x n bytes into
92 x n bytes which is 23% saving of energy and bandwidth requirement for
transporting monitoring data from sensor nodes to the clustered head.

62

Resource Monitoring for Wireless Sensor ...

Figure 9. Interaction between sensor nodes, cluster head and sink

63

Nagesha, Sunilkumar S. Manvi

(a) Bandwidth

(b) Energy

Figure 10. Performance at cluster level

5.4 Network level

Analysis: By using the ANFIS, the transmission of resource monitoring data
from sensor node to cluster head is reduced from 120 bytes/time unit (EMP,
periodic reporting) into 92 bytes/time unit. The network of n sensor nodes
with ANFIS in each node reduces the need of transmitting 120 x n bytes into
92 x n bytes which is 23% saving of energy and bandwidth requirement for
transporting monitoring data from sensor nodes to the clustered head.

64

Resource Monitoring for Wireless Sensor ...

Let us consider the clustered tree network with equal number of sensor
nodes in each cluster for analysis. The number of bytes saved is 28 bytes x
number of sensor nodes in the cluster x number of branches from the root
(sink) x depth of tree (sink at depth 0). For 175 sensor nodes clustered tree
network with 7 sensor nodes in each cluster, with five branches and five levels
as shown in the Figure 6, the number of bytes saved is 28 x 7 x 5 x 5 = 4900
bytes/time unit which is 23% saving compared to 21000 bytes/time unit
(EMP, periodic reporting) as shown in the Figure 11(a). Again there is a sav-
ing of 23% of energy and bandwidth while transporting each cluster monitor-
ing data from cluster head to sink. The monitoring data movement from clus-
ter head to sink takes more than one hop if the cluster is at depth greater than
one. There is a saving of 23% of energy and bandwidth for each hop of data
movement from cluster head.

The query processing for fetching resources information using LNMP de-
mands 280 bytes/time unit as compared to 92 bytes/time unit required by AN-
FIS. This is about 67% less data movement from sensor node to cluster head
and saves 67% energy and bandwidth. For the above mentioned clustered tree
network, it is the saving of 188 x 7 x 5 x 5 = 32,900 bytes/time unit which is
67% saving compared to 49,000 bytes/time unit (LNMP, query processing) as
shown in the Figure 11(a). Hence, there is saving of 67% of energy and
bandwidth for each hop of the data movement from cluster head.

 Figure 11(b) shows the comparison of energy consumption in LNMP,
EMP and ANFIS when used for resource monitoring for 10 time units. The
graph clearly shows the energy saving in sensor node with ANFIS and CoAP
(257 mJ for 10 time units) of 23% when compared to EMP (336 mJ for 10
time units) and 67% when compared to LNMP (784 mJ for 10 time units).

If there are two different resources consumption patterns (R3, R2, R1 for
'a' nodes and R6, R5, R4 for 'b' nodes where a + b = 7) in each cluster, then
number bytes saved from transmission is different for different resource con-
sumption pattern (say p \& q). Then bytes saved from transmission is (p x a x
5 x 5) + (q x b x 5 x 5).

In general, for a sensor network of n nodes with different resources con-
sumption patterns for different sensor nodes

Total number of bytes saved from transmission (nodes to cluster head)

=

n

i
ia

1

where ai - bytes saved from transmission for ith sensor node per hop, i = 1, 2,
3, ..., n-1,n;

65

Nagesha, Sunilkumar S. Manvi

(a) Bandwidth

(b) Energy

Figure 11. Performance at network level

The saving of energy in all the above cases is at the transmitting end as
well as at the receiving end (receiving also consumes energy).

6 Conclusions

WSNs are becoming part of Internet of Things and getting merged into main-
stream Internet. In the proposed work for resource monitoring of WSNs, sen-
sor nodes and network are considered as Internet of Things. Each and every
sensor node is simulated as web server, cluster head as both web server and
web client, and sink as web client. Data related to monitoring of resources of

64

Resource Monitoring for Wireless Sensor ...

Let us consider the clustered tree network with equal number of sensor
nodes in each cluster for analysis. The number of bytes saved is 28 bytes x
number of sensor nodes in the cluster x number of branches from the root
(sink) x depth of tree (sink at depth 0). For 175 sensor nodes clustered tree
network with 7 sensor nodes in each cluster, with five branches and five levels
as shown in the Figure 6, the number of bytes saved is 28 x 7 x 5 x 5 = 4900
bytes/time unit which is 23% saving compared to 21000 bytes/time unit
(EMP, periodic reporting) as shown in the Figure 11(a). Again there is a sav-
ing of 23% of energy and bandwidth while transporting each cluster monitor-
ing data from cluster head to sink. The monitoring data movement from clus-
ter head to sink takes more than one hop if the cluster is at depth greater than
one. There is a saving of 23% of energy and bandwidth for each hop of data
movement from cluster head.

The query processing for fetching resources information using LNMP de-
mands 280 bytes/time unit as compared to 92 bytes/time unit required by AN-
FIS. This is about 67% less data movement from sensor node to cluster head
and saves 67% energy and bandwidth. For the above mentioned clustered tree
network, it is the saving of 188 x 7 x 5 x 5 = 32,900 bytes/time unit which is
67% saving compared to 49,000 bytes/time unit (LNMP, query processing) as
shown in the Figure 11(a). Hence, there is saving of 67% of energy and
bandwidth for each hop of the data movement from cluster head.

 Figure 11(b) shows the comparison of energy consumption in LNMP,
EMP and ANFIS when used for resource monitoring for 10 time units. The
graph clearly shows the energy saving in sensor node with ANFIS and CoAP
(257 mJ for 10 time units) of 23% when compared to EMP (336 mJ for 10
time units) and 67% when compared to LNMP (784 mJ for 10 time units).

If there are two different resources consumption patterns (R3, R2, R1 for
'a' nodes and R6, R5, R4 for 'b' nodes where a + b = 7) in each cluster, then
number bytes saved from transmission is different for different resource con-
sumption pattern (say p \& q). Then bytes saved from transmission is (p x a x
5 x 5) + (q x b x 5 x 5).

In general, for a sensor network of n nodes with different resources con-
sumption patterns for different sensor nodes

Total number of bytes saved from transmission (nodes to cluster head)

=

n

i
ia

1

where ai - bytes saved from transmission for ith sensor node per hop, i = 1, 2,
3, ..., n-1,n;

65

Nagesha, Sunilkumar S. Manvi

(a) Bandwidth

(b) Energy

Figure 11. Performance at network level

The saving of energy in all the above cases is at the transmitting end as
well as at the receiving end (receiving also consumes energy).

6 Conclusions

WSNs are becoming part of Internet of Things and getting merged into main-
stream Internet. In the proposed work for resource monitoring of WSNs, sen-
sor nodes and network are considered as Internet of Things. Each and every
sensor node is simulated as web server, cluster head as both web server and
web client, and sink as web client. Data related to monitoring of resources of

66

Resource Monitoring for Wireless Sensor ...

sensor node (processing speed, memory, energy, bandwidth) are pushed to the
client (cluster head) using the observe option of the CoAP protocol. The sen-
sor nodes are equipped with the ANFIS which decides which resources are to
be pushed to the client. Use of ANFIS in sensor nodes reduces resource moni-
toring data size by 23\% per hop when compared to EMP (periodic reporting)
and 67\% per hop when compared to LNMP (query processing). This results
in the saving of energy and bandwidth requirement (in sensor node with AN-
FIS) by 23\% when compared to EMP and 67\% when compared to LNMP.
The simulation is conducted at two levels: (1) node level: A sensor node
which is equipped with ANFIS notifies resource monitoring data to sink
which is a client. (2) Cluster level: All sensor nodes (web servers) of the clus-
ter are equipped with the ANFIS and notify resource monitoring data to the
cluster head (web client) which in turn notifies (now acts as web server) the
same to the sink (web client). Effect of using ANFIS in senor node for re-
source monitoring in clustered tree network is analyzed.

References

1. Ian. F. Akyildiz, Weillan Su, Yogesh Sankarasubramaniam and Erdal Cayirci,
2002, A Survey on Sensor Networks, IEEE Communication Magazine Vol.40,
No.8, pp.102-114.

2. Zack Shelby, 2010. Embedded Web Services, IEEE Wireless Communications,
Vol.17, No.6, pp.52-57.

3. Jyh-shing Roger Jang, 1993, ANFIS: Adaptive network base Fuzzy Inference
System, IEEE Transactions on Systems, Man and Cybernetics Vol.23, No.03,
pp.665-685

4. Shelby Z., Hartke K. and Bormann C., 2014, The IETF's, The Constrained Ap-
plication Protocol, https://datatracker.ietf.org/doc/rfc7252/

5. Hartke K., 2015, Observing Resources in the Constrained Application Protocol
(CoAP), http://www.rfc-editor.org/info/rfc7641/

6. Yonggang Jerry Zhao, Ramesh Govindhan and Deborah Estrin, 2002, Residual
Energy scan for Monitoring Sensor Networks,
https://escholarship.org/uc/item/2st0t8cf

7. Raquel A. F. Mini, Max do Val Machado, Antonio A. F. Loureiro and Badri
Nath, 2005, Prediction - based energy map for wireless sensor networks, Ad
Hoc Networks, Vol 3, No. 2, pp. 235-253

8. Edward Chan and Song Han, 2009, Energy Efficient Residual Energy Monitor-
ing in Wireless Sensor Networks, International Journal of Distributed Sensor
Networks, Vol 5, pp. 748-770

9. Alec Woo, Terence Tong and David Culler, 2003, Taming the Underlying Chal-
lenges of Reliable Multihop Routing in Sensor Networks, SenSys' 03, November
5-7, 2003, Los Angeles, California, USA.

67

Nagesha, Sunilkumar S. Manvi

10. Chieh-Yih, Shane B. Eisenman and Andrew T. Campbell, 2003, CO-
DA:Congestion Detection and Avoidance in Sensor Networks, SenSys' 03, No-
vember 5-7, 2003, Los Angeles, California, USA.

11. Li Qiang Tao and Feng Qi Yu, 2010, ECODA:enhanced congestion detection
and avoidance for multiple class of traffic in sensor networks, IEEE Transaction
on Consumer Electronics, Vol 56, No. 3, pp.1387-1394

12. Falko Dressler and Dominik Neuner, 2013, Energy-Efficient Monitoring of Dis-
tributed System Resources for Self-Organizing Sensor Networks, IEEE Topical
conference on wireless sensors networks (WiSNET), Jan 20-23, 2013 Austin,
TX, PP.145-147

13. Winnie Louis Lee, Amitava Datta and Rachel Cardell-Oliver, 2007, Network
Management in Wireless Sensor Networks, https://cpn.unl.edu/

14. Hamid Mukhtar, Kim Kang-Myo, Shafique Ahmad Chaudhry, Ali Hammad Ak-
bar, Kim Ki-Hyung, Seung-Wha Yoo, 2008, LNMP-Management architecture of
IPv6 based low-power wireless Personal Area Networks (6LoWPAN), IEEE
Network operations and Management Symposium, April 7-11 2008, Salvador
Bahia, pp.417-424

15. Shafique Ahmad Chaudhry, Weiping Song, Muhammad Habeeb Vulla, Cormac
Sreenan, 2011, EMP:A Protocol for IP Based Wireless Sensor Networks Man-
agement, Journal of Ubiquitous Systems and Pervasive Networks, Vol. 2, No. 1,
pp. 15-22.

16. Zhengguo Sheng, Hao Wang, Changchuan Yin, Xiping Hu, Shusen Yang, Vic-
tor C. M. Leung, 2015, Lightweight Management of Resource Constrained Sen-
sor Devices in Internet of Things, IEEE Internet of Things Journal, Vol. 2, No.5,
pp. 402-411.

17. Nagesha and Sunilkumar S. Manvi, 2016, ANFIS based Resource Mapping for
Query Processing in Wireless Multimedia Sensor Networks, Journal of Intelli-
gent Systems, accepted, http://www.degruyter.com/printahead/j/jisys

18. Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne,
Luigi Alfredo Grieco, Gennaro Boggia, Mischa Dohler, 2013, Standardized pro-
tocol stack for the Internet of (Important) Things, IEEE Communication Surveys
and Tutorials, Vol. 15, No. 3, pp.1389-1406.

19. Wireless personal area network (WPAN) working group, 2011, Low-Rate Wire-
less Personal Area Networks (LR-WPANs), http://standards.ieee.org.

20. Kushalnagar N., Montenegro G. and Schumacher C., 2007, IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,
problem Statement, and Goals, https://datatracker.ietf.org/doc/rfc4919/

21. Winter,T., Thubert,P., Brandt,A., Hui,J., Kelsey,R., Levis,P., Pister,K., Stru-
ik,R., JP.Vasseur and Alexander,R., 2012, RPL:IPv6 Routing Protocol for Low-
Power and Lossy Networks, https://datatracker.ietf.org/doc/rfc6550/

22. Tomohiro Takagi and Michio Sugeno, 1985, Fuzzy Identification of Systems and
its Application to Modelling and Control, IEEE Transactions on Systems, Man
and Cybernetics, Vol. 15, pp.116-132

66

Resource Monitoring for Wireless Sensor ...

sensor node (processing speed, memory, energy, bandwidth) are pushed to the
client (cluster head) using the observe option of the CoAP protocol. The sen-
sor nodes are equipped with the ANFIS which decides which resources are to
be pushed to the client. Use of ANFIS in sensor nodes reduces resource moni-
toring data size by 23\% per hop when compared to EMP (periodic reporting)
and 67\% per hop when compared to LNMP (query processing). This results
in the saving of energy and bandwidth requirement (in sensor node with AN-
FIS) by 23\% when compared to EMP and 67\% when compared to LNMP.
The simulation is conducted at two levels: (1) node level: A sensor node
which is equipped with ANFIS notifies resource monitoring data to sink
which is a client. (2) Cluster level: All sensor nodes (web servers) of the clus-
ter are equipped with the ANFIS and notify resource monitoring data to the
cluster head (web client) which in turn notifies (now acts as web server) the
same to the sink (web client). Effect of using ANFIS in senor node for re-
source monitoring in clustered tree network is analyzed.

References

1. Ian. F. Akyildiz, Weillan Su, Yogesh Sankarasubramaniam and Erdal Cayirci,
2002, A Survey on Sensor Networks, IEEE Communication Magazine Vol.40,
No.8, pp.102-114.

2. Zack Shelby, 2010. Embedded Web Services, IEEE Wireless Communications,
Vol.17, No.6, pp.52-57.

3. Jyh-shing Roger Jang, 1993, ANFIS: Adaptive network base Fuzzy Inference
System, IEEE Transactions on Systems, Man and Cybernetics Vol.23, No.03,
pp.665-685

4. Shelby Z., Hartke K. and Bormann C., 2014, The IETF's, The Constrained Ap-
plication Protocol, https://datatracker.ietf.org/doc/rfc7252/

5. Hartke K., 2015, Observing Resources in the Constrained Application Protocol
(CoAP), http://www.rfc-editor.org/info/rfc7641/

6. Yonggang Jerry Zhao, Ramesh Govindhan and Deborah Estrin, 2002, Residual
Energy scan for Monitoring Sensor Networks,
https://escholarship.org/uc/item/2st0t8cf

7. Raquel A. F. Mini, Max do Val Machado, Antonio A. F. Loureiro and Badri
Nath, 2005, Prediction - based energy map for wireless sensor networks, Ad
Hoc Networks, Vol 3, No. 2, pp. 235-253

8. Edward Chan and Song Han, 2009, Energy Efficient Residual Energy Monitor-
ing in Wireless Sensor Networks, International Journal of Distributed Sensor
Networks, Vol 5, pp. 748-770

9. Alec Woo, Terence Tong and David Culler, 2003, Taming the Underlying Chal-
lenges of Reliable Multihop Routing in Sensor Networks, SenSys' 03, November
5-7, 2003, Los Angeles, California, USA.

67

Nagesha, Sunilkumar S. Manvi

10. Chieh-Yih, Shane B. Eisenman and Andrew T. Campbell, 2003, CO-
DA:Congestion Detection and Avoidance in Sensor Networks, SenSys' 03, No-
vember 5-7, 2003, Los Angeles, California, USA.

11. Li Qiang Tao and Feng Qi Yu, 2010, ECODA:enhanced congestion detection
and avoidance for multiple class of traffic in sensor networks, IEEE Transaction
on Consumer Electronics, Vol 56, No. 3, pp.1387-1394

12. Falko Dressler and Dominik Neuner, 2013, Energy-Efficient Monitoring of Dis-
tributed System Resources for Self-Organizing Sensor Networks, IEEE Topical
conference on wireless sensors networks (WiSNET), Jan 20-23, 2013 Austin,
TX, PP.145-147

13. Winnie Louis Lee, Amitava Datta and Rachel Cardell-Oliver, 2007, Network
Management in Wireless Sensor Networks, https://cpn.unl.edu/

14. Hamid Mukhtar, Kim Kang-Myo, Shafique Ahmad Chaudhry, Ali Hammad Ak-
bar, Kim Ki-Hyung, Seung-Wha Yoo, 2008, LNMP-Management architecture of
IPv6 based low-power wireless Personal Area Networks (6LoWPAN), IEEE
Network operations and Management Symposium, April 7-11 2008, Salvador
Bahia, pp.417-424

15. Shafique Ahmad Chaudhry, Weiping Song, Muhammad Habeeb Vulla, Cormac
Sreenan, 2011, EMP:A Protocol for IP Based Wireless Sensor Networks Man-
agement, Journal of Ubiquitous Systems and Pervasive Networks, Vol. 2, No. 1,
pp. 15-22.

16. Zhengguo Sheng, Hao Wang, Changchuan Yin, Xiping Hu, Shusen Yang, Vic-
tor C. M. Leung, 2015, Lightweight Management of Resource Constrained Sen-
sor Devices in Internet of Things, IEEE Internet of Things Journal, Vol. 2, No.5,
pp. 402-411.

17. Nagesha and Sunilkumar S. Manvi, 2016, ANFIS based Resource Mapping for
Query Processing in Wireless Multimedia Sensor Networks, Journal of Intelli-
gent Systems, accepted, http://www.degruyter.com/printahead/j/jisys

18. Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne,
Luigi Alfredo Grieco, Gennaro Boggia, Mischa Dohler, 2013, Standardized pro-
tocol stack for the Internet of (Important) Things, IEEE Communication Surveys
and Tutorials, Vol. 15, No. 3, pp.1389-1406.

19. Wireless personal area network (WPAN) working group, 2011, Low-Rate Wire-
less Personal Area Networks (LR-WPANs), http://standards.ieee.org.

20. Kushalnagar N., Montenegro G. and Schumacher C., 2007, IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,
problem Statement, and Goals, https://datatracker.ietf.org/doc/rfc4919/

21. Winter,T., Thubert,P., Brandt,A., Hui,J., Kelsey,R., Levis,P., Pister,K., Stru-
ik,R., JP.Vasseur and Alexander,R., 2012, RPL:IPv6 Routing Protocol for Low-
Power and Lossy Networks, https://datatracker.ietf.org/doc/rfc6550/

22. Tomohiro Takagi and Michio Sugeno, 1985, Fuzzy Identification of Systems and
its Application to Modelling and Control, IEEE Transactions on Systems, Man
and Cybernetics, Vol. 15, pp.116-132

69

MONADIC PRINTING REVISITED

Konrad Grzanek

IT Institute, University of Social Sciences

9 Sienkiewicza St., 90-113 Łódź, Poland

kgrzanek@spoleczna.pl

Abstract

Expressive and clear implementation of monadic printing requires an amount of

work to define and design proper abstractions to rely upon when performing the

actual programming works. Our previous realization of tree printing library left us

with a sense of lack with respect to these considerations. This is why we decided

to re-design and re-implement the library with core algorithms based upon new, ef-

fective and expressive text printing and concatenation routines. This paper presents

the results of our work.

Keywords: Functional programming, monads, Haskell, polymorphism

1 Introduction

Textual presentation of data structures is invariably one of the most effective ways to

visualize them, especially when it comes to presentation of large data structures. The

ability to display textual content and working on the presentation results with automated

text-processing tools sometimes makes this way of visualizing much more appealing to

the end-user than displaying using GUI views. The data structure that is especially

susceptible to this approach is tree, or – even more generally – DAG (Directed Acyclic

Graph).

Our previous work on this subject aimed towards creating a library for visualizing

trees and DAGs. Our few years old paper [5] presented a library for Haskell [1, 2], the

purely functional and statically typed programming language. The library described

there possessed the following properties:

– The ability to generate representations of arbitrary DAGs.

– Writing to any monad including IO. This also means it was capable of writing to

normal Haskel Strings (lists of Char) via Identity monad.

– Extensive use of Haskell type-system to verify correctness of the usage scenarios.

69

MONADIC PRINTING REVISITED

Konrad Grzanek

IT Institute, University of Social Sciences

9 Sienkiewicza St., 90-113 Łódź, Poland

kgrzanek@spoleczna.pl

Abstract

Expressive and clear implementation of monadic printing requires an amount of

work to define and design proper abstractions to rely upon when performing the

actual programming works. Our previous realization of tree printing library left us

with a sense of lack with respect to these considerations. This is why we decided

to re-design and re-implement the library with core algorithms based upon new, ef-

fective and expressive text printing and concatenation routines. This paper presents

the results of our work.

Keywords: Functional programming, monads, Haskell, polymorphism

1 Introduction

Textual presentation of data structures is invariably one of the most effective ways to

visualize them, especially when it comes to presentation of large data structures. The

ability to display textual content and working on the presentation results with automated

text-processing tools sometimes makes this way of visualizing much more appealing to

the end-user than displaying using GUI views. The data structure that is especially

susceptible to this approach is tree, or – even more generally – DAG (Directed Acyclic

Graph).

Our previous work on this subject aimed towards creating a library for visualizing

trees and DAGs. Our few years old paper [5] presented a library for Haskell [1, 2], the

purely functional and statically typed programming language. The library described

there possessed the following properties:

– The ability to generate representations of arbitrary DAGs.

– Writing to any monad including IO. This also means it was capable of writing to

normal Haskel Strings (lists of Char) via Identity monad.

– Extensive use of Haskell type-system to verify correctness of the usage scenarios.

70

 Monadic Printing Revisited ...

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

71

Grzanek K.

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

print = print ◦ evalShowS

printLn = putStrLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO T.Text where

print = TIO.putStr

printLn = TIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO TL.Text where

print = TLIO.putStr

printLn = TLIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide an IO-monadic implementation for an effective textual builder defined

in Data.Text.Lazy.Builder, like:

instance Printable IO TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.2 Text in the State Monad

Another interesting monad to mention here is the state monad, as defined in Con-

trol.Monad.State.Stric. We define a special type TextBuilder to wrap the textual state

management within an useful text-coercible abstraction:

type TextBuilder = S.State T.Text

toText :: TextBuilder ()→ T.Text

toText tb = snd (S.runState tb "")
{-# INLINE toText #-}

The TextBuilder monad has the following Printable implementations for String and

ShowS:

instance Printable TextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable TextBuilder ShowS where

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

print = print ◦ evalShowS

printLn = putStrLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO T.Text where

print = TIO.putStr

printLn = TIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO TL.Text where

print = TLIO.putStr

printLn = TLIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide an IO-monadic implementation for an effective textual builder defined

in Data.Text.Lazy.Builder, like:

instance Printable IO TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.2 Text in the State Monad

Another interesting monad to mention here is the state monad, as defined in Con-

trol.Monad.State.Stric. We define a special type TextBuilder to wrap the textual state

management within an useful text-coercible abstraction:

type TextBuilder = S.State T.Text

toText :: TextBuilder ()→ T.Text

toText tb = snd (S.runState tb "")
{-# INLINE toText #-}

The TextBuilder monad has the following Printable implementations for String and

ShowS:

instance Printable TextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable TextBuilder ShowS where

70

 Monadic Printing Revisited ...

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

71

Grzanek K.

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

print = print ◦ evalShowS

printLn = putStrLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO T.Text where

print = TIO.putStr

printLn = TIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO TL.Text where

print = TLIO.putStr

printLn = TLIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide an IO-monadic implementation for an effective textual builder defined

in Data.Text.Lazy.Builder, like:

instance Printable IO TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.2 Text in the State Monad

Another interesting monad to mention here is the state monad, as defined in Con-

trol.Monad.State.Stric. We define a special type TextBuilder to wrap the textual state

management within an useful text-coercible abstraction:

type TextBuilder = S.State T.Text

toText :: TextBuilder ()→ T.Text

toText tb = snd (S.runState tb "")
{-# INLINE toText #-}

The TextBuilder monad has the following Printable implementations for String and

ShowS:

instance Printable TextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable TextBuilder ShowS where

Unfortunately, the design and implementation of this library was not perfect. It

missed expressiveness and the clarity of algorithm formulation. These issues led to

extensive re-design of the library. The updated architecture of the library consists of:

– Printing abstraction,

– String/Text concatenation routines,

– Re-designed tree printing implemented on top of the two previous ones.

This paper is an attempt to present all the details of the refreshed library.

2 Printing Abstraction and Its Implementations

Generic printing mechanisms are defined in Kask.Print module [6]. All its contents are

defined in the presence of the following import clauses:

import qualified Control.Monad.State.Strict as S

import Data.Monoid ((<>))
import qualified Data.Text as T

import qualified Data.Text.IO as TIO

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Data.Text.Lazy.IO as TLIO

import Prelude hiding (print)

The most essential abstraction is a type-class called Printable. It is parameterized by

two type-arguments out of which the first one, m, is a monad [4].

We have two procedures defined here, namely print and printLn. They both return

a unit-type in the monad m. The printLn works exactly like print, but it adds a newline

character to the end of the printed entity of type p:

class Monad m ⇒ Printable m p where

print :: p → m ()
printLn :: p → m ()

2.1 IO Monad

The Printable type-class is implemented within the IO monad for a collection of textual

data-types, like String, ShowS, and Text, either lazily and eagerly evaluated. See the

listing below:

instance Printable IO String where

print = putStr

printLn = putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO ShowS where

print = print ◦ evalShowS

printLn = putStrLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO T.Text where

print = TIO.putStr

printLn = TIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable IO TL.Text where

print = TLIO.putStr

printLn = TLIO.putStrLn

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide an IO-monadic implementation for an effective textual builder defined

in Data.Text.Lazy.Builder, like:

instance Printable IO TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.2 Text in the State Monad

Another interesting monad to mention here is the state monad, as defined in Con-

trol.Monad.State.Stric. We define a special type TextBuilder to wrap the textual state

management within an useful text-coercible abstraction:

type TextBuilder = S.State T.Text

toText :: TextBuilder ()→ T.Text

toText tb = snd (S.runState tb "")
{-# INLINE toText #-}

The TextBuilder monad has the following Printable implementations for String and

ShowS:

instance Printable TextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable TextBuilder ShowS where

72

 Monadic Printing Revisited ...

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

73

Grzanek K.

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

instance Printable LazyTextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder ShowS where

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for strictly and lazily evaluated Text instances:

instance Printable LazyTextBuilder T.Text where

print = print ◦TLB.fromText

printLn = printLn◦TLB.fromText

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder TL.Text where

print = print ◦TLB.fromLazyText

printLn = printLn◦TLB.fromLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

To make this realization conceptually coherent with the previous ones, we also provide

an implementation for TLB.Builder (as it was presented in the previous sub-sections):

instance Printable LazyTextBuilder TLB.Builder where

print b = do

builder ← S.get

S.put (builder<>b)
{-# INLINE print #-}

printLn b = do

builder ← S.get

S.put (builder<>b<>TLB.fromLazyText "\n")
{-# INLINE printLn #-}

2.4 ShowS in the State Monad

For ShowS type we define a separate State Monad instance, together with the following

evaluators:

type StringBuilder = S.State ShowS

evalShowS :: ShowS → String

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

instance Printable LazyTextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder ShowS where

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for strictly and lazily evaluated Text instances:

instance Printable LazyTextBuilder T.Text where

print = print ◦TLB.fromText

printLn = printLn◦TLB.fromText

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder TL.Text where

print = print ◦TLB.fromLazyText

printLn = printLn◦TLB.fromLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

To make this realization conceptually coherent with the previous ones, we also provide

an implementation for TLB.Builder (as it was presented in the previous sub-sections):

instance Printable LazyTextBuilder TLB.Builder where

print b = do

builder ← S.get

S.put (builder<>b)
{-# INLINE print #-}

printLn b = do

builder ← S.get

S.put (builder<>b<>TLB.fromLazyText "\n")
{-# INLINE printLn #-}

2.4 ShowS in the State Monad

For ShowS type we define a separate State Monad instance, together with the following

evaluators:

type StringBuilder = S.State ShowS

evalShowS :: ShowS → String

72

 Monadic Printing Revisited ...

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

73

Grzanek K.

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

instance Printable LazyTextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder ShowS where

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for strictly and lazily evaluated Text instances:

instance Printable LazyTextBuilder T.Text where

print = print ◦TLB.fromText

printLn = printLn◦TLB.fromText

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder TL.Text where

print = print ◦TLB.fromLazyText

printLn = printLn◦TLB.fromLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

To make this realization conceptually coherent with the previous ones, we also provide

an implementation for TLB.Builder (as it was presented in the previous sub-sections):

instance Printable LazyTextBuilder TLB.Builder where

print b = do

builder ← S.get

S.put (builder<>b)
{-# INLINE print #-}

printLn b = do

builder ← S.get

S.put (builder<>b<>TLB.fromLazyText "\n")
{-# INLINE printLn #-}

2.4 ShowS in the State Monad

For ShowS type we define a separate State Monad instance, together with the following

evaluators:

type StringBuilder = S.State ShowS

evalShowS :: ShowS → String

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for eagerly, and lazily evaluated Text:

instance Printable TextBuilder T.Text where

print txt = do

buf ← S.get

S.put (T.append buf txt)
{-# INLINE print #-}

printLn txt = do

buf ← S.get

S.put (T.append (T.append buf txt) "\n")
{-# INLINE printLn #-}

instance Printable TextBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

We also provide implementation for Data.Text.Lazy.Builder like in the case of IO monad:

instance Printable TextBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

2.3 Lazy Text Builder in the State Monad

Eagerly evaluated state monad may be also used as a basis for a lazily evaluated string

builder, as defined below, together with two state evaluators:

type LazyTextBuilder = S.State TLB.Builder

toLazyTextBuilder :: LazyTextBuilder ()→ TLB.Builder

toLazyTextBuilder tb = snd $ S.runState tb $ TLB.fromString ""

{-# INLINE toLazyTextBuilder #-}

toLazyText :: LazyTextBuilder ()→ TL.Text

toLazyText = TLB.toLazyText ◦ toLazyTextBuilder

{-# INLINE toLazyText #-}

Like in the case of the previous monadic implementations, firstly we define the imple-

mentations for String and ShowS:

instance Printable LazyTextBuilder String where

print = print ◦T.pack

printLn = printLn◦T.pack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder ShowS where

print = print ◦ evalShowS

printLn = printLn◦ evalShowS

{-# INLINE print #-}
{-# INLINE printLn #-}

as well as for strictly and lazily evaluated Text instances:

instance Printable LazyTextBuilder T.Text where

print = print ◦TLB.fromText

printLn = printLn◦TLB.fromText

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable LazyTextBuilder TL.Text where

print = print ◦TLB.fromLazyText

printLn = printLn◦TLB.fromLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

To make this realization conceptually coherent with the previous ones, we also provide

an implementation for TLB.Builder (as it was presented in the previous sub-sections):

instance Printable LazyTextBuilder TLB.Builder where

print b = do

builder ← S.get

S.put (builder<>b)
{-# INLINE print #-}

printLn b = do

builder ← S.get

S.put (builder<>b<>TLB.fromLazyText "\n")
{-# INLINE printLn #-}

2.4 ShowS in the State Monad

For ShowS type we define a separate State Monad instance, together with the following

evaluators:

type StringBuilder = S.State ShowS

evalShowS :: ShowS → String

74

 Monadic Printing Revisited ...

evalShowS s = s ""

{-# INLINE evalShowS #-}

toShowS :: StringBuilder ()→ ShowS

toShowS tb = snd (S.runState tb (showString ""))
{-# INLINE toShowS #-}

toString :: StringBuilder ()→ String

toString = evalShowS◦ toShowS

{-# INLINE toString #-}

The String and ShowS instances of the Printable type-class raise up in a natural way:

instance Printable StringBuilder String where

print = print ◦ showString

printLn = printLn◦ showString

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder ShowS where

print s = do

buf ← S.get

S.put (buf ◦ s)
{-# INLINE print #-}

printLn s = do

buf ← S.get

S.put (buf ◦ s◦ showString "\n")
{-# INLINE printLn #-}

along with Text instances, like in the following listing:

instance Printable StringBuilder T.Text where

print = print ◦T.unpack

printLn = printLn◦T.unpack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

75

Grzanek K.

evalShowS s = s ""

{-# INLINE evalShowS #-}

toShowS :: StringBuilder ()→ ShowS

toShowS tb = snd (S.runState tb (showString ""))
{-# INLINE toShowS #-}

toString :: StringBuilder ()→ String

toString = evalShowS◦ toShowS

{-# INLINE toString #-}

The String and ShowS instances of the Printable type-class raise up in a natural way:

instance Printable StringBuilder String where

print = print ◦ showString

printLn = printLn◦ showString

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder ShowS where

print s = do

buf ← S.get

S.put (buf ◦ s)
{-# INLINE print #-}

printLn s = do

buf ← S.get

S.put (buf ◦ s◦ showString "\n")
{-# INLINE printLn #-}

along with Text instances, like in the following listing:

instance Printable StringBuilder T.Text where

print = print ◦T.unpack

printLn = printLn◦T.unpack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

3 Compatible Abstraction for Concatenation

Early in the design phase it became apparent that we might use the Printable for string

concatenation. After all the concatenation may be viewed here as printing into the con-

catenating (string/text builder) object. To make things clear we provide the following

StrCat type-class, that is another useful abstraction in our library:

class StrCat c where

strCat :: (Foldable t)⇒ t c → c

Concatenation is being treated as a fold (e.g. see [3]) operation, that’s why we define

the strCat mechanism as taking place inside a Foldable.

Functional merging of StrCat and Printable takes place via the following strCatWith

procedure:

strCatWith :: (Printable m c,Foldable t)⇒ (m ()→ c)→ t c → c

strCatWith f = f ◦mapM print

{-# INLINE strCatWith #-}

This immediately allows us to provide StrCat implementations for String and ShowS:

instance StrCat String where

strCat = strCatWith toString

{-# INLINE strCat #-}

instance StrCat ShowS where

strCat = strCatWith toShowS

{-# INLINE strCat #-}

The same approach applies to Text and TLB.Builder:

instance StrCat T.Text where

strCat = strCatWith toText

{-# INLINE strCat #-}

instance StrCat TL.Text where

strCat = strCatWith toLazyText

{-# INLINE strCat #-}

instance StrCat TLB.Builder where

strCat = strCatWith toLazyTextBuilder

{-# INLINE strCat #-}

4 Re-designed Tree Printing

All abstractions and their implementations described so far allow us to provide an up-

dated realization of tree printing, previously defined and presented in [5]. The new

3 Compatible Abstraction for Concatenation

Early in the design phase it became apparent that we might use the Printable for string

concatenation. After all the concatenation may be viewed here as printing into the con-

catenating (string/text builder) object. To make things clear we provide the following

StrCat type-class, that is another useful abstraction in our library:

class StrCat c where

strCat :: (Foldable t)⇒ t c → c

Concatenation is being treated as a fold (e.g. see [3]) operation, that’s why we define

the strCat mechanism as taking place inside a Foldable.

Functional merging of StrCat and Printable takes place via the following strCatWith

procedure:

strCatWith :: (Printable m c,Foldable t)⇒ (m ()→ c)→ t c → c

strCatWith f = f ◦mapM print

{-# INLINE strCatWith #-}

This immediately allows us to provide StrCat implementations for String and ShowS:

instance StrCat String where

strCat = strCatWith toString

{-# INLINE strCat #-}

instance StrCat ShowS where

strCat = strCatWith toShowS

{-# INLINE strCat #-}

The same approach applies to Text and TLB.Builder:

instance StrCat T.Text where

strCat = strCatWith toText

{-# INLINE strCat #-}

instance StrCat TL.Text where

strCat = strCatWith toLazyText

{-# INLINE strCat #-}

instance StrCat TLB.Builder where

strCat = strCatWith toLazyTextBuilder

{-# INLINE strCat #-}

4 Re-designed Tree Printing

All abstractions and their implementations described so far allow us to provide an up-

dated realization of tree printing, previously defined and presented in [5]. The new

74

 Monadic Printing Revisited ...

evalShowS s = s ""

{-# INLINE evalShowS #-}

toShowS :: StringBuilder ()→ ShowS

toShowS tb = snd (S.runState tb (showString ""))
{-# INLINE toShowS #-}

toString :: StringBuilder ()→ String

toString = evalShowS◦ toShowS

{-# INLINE toString #-}

The String and ShowS instances of the Printable type-class raise up in a natural way:

instance Printable StringBuilder String where

print = print ◦ showString

printLn = printLn◦ showString

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder ShowS where

print s = do

buf ← S.get

S.put (buf ◦ s)
{-# INLINE print #-}

printLn s = do

buf ← S.get

S.put (buf ◦ s◦ showString "\n")
{-# INLINE printLn #-}

along with Text instances, like in the following listing:

instance Printable StringBuilder T.Text where

print = print ◦T.unpack

printLn = printLn◦T.unpack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

75

Grzanek K.

evalShowS s = s ""

{-# INLINE evalShowS #-}

toShowS :: StringBuilder ()→ ShowS

toShowS tb = snd (S.runState tb (showString ""))
{-# INLINE toShowS #-}

toString :: StringBuilder ()→ String

toString = evalShowS◦ toShowS

{-# INLINE toString #-}

The String and ShowS instances of the Printable type-class raise up in a natural way:

instance Printable StringBuilder String where

print = print ◦ showString

printLn = printLn◦ showString

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder ShowS where

print s = do

buf ← S.get

S.put (buf ◦ s)
{-# INLINE print #-}

printLn s = do

buf ← S.get

S.put (buf ◦ s◦ showString "\n")
{-# INLINE printLn #-}

along with Text instances, like in the following listing:

instance Printable StringBuilder T.Text where

print = print ◦T.unpack

printLn = printLn◦T.unpack

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TL.Text where

print = print ◦TL.toStrict

printLn = printLn◦TL.toStrict

{-# INLINE print #-}
{-# INLINE printLn #-}

instance Printable StringBuilder TLB.Builder where

print = print ◦TLB.toLazyText

printLn = printLn◦TLB.toLazyText

{-# INLINE print #-}
{-# INLINE printLn #-}

3 Compatible Abstraction for Concatenation

Early in the design phase it became apparent that we might use the Printable for string

concatenation. After all the concatenation may be viewed here as printing into the con-

catenating (string/text builder) object. To make things clear we provide the following

StrCat type-class, that is another useful abstraction in our library:

class StrCat c where

strCat :: (Foldable t)⇒ t c → c

Concatenation is being treated as a fold (e.g. see [3]) operation, that’s why we define

the strCat mechanism as taking place inside a Foldable.

Functional merging of StrCat and Printable takes place via the following strCatWith

procedure:

strCatWith :: (Printable m c,Foldable t)⇒ (m ()→ c)→ t c → c

strCatWith f = f ◦mapM print

{-# INLINE strCatWith #-}

This immediately allows us to provide StrCat implementations for String and ShowS:

instance StrCat String where

strCat = strCatWith toString

{-# INLINE strCat #-}

instance StrCat ShowS where

strCat = strCatWith toShowS

{-# INLINE strCat #-}

The same approach applies to Text and TLB.Builder:

instance StrCat T.Text where

strCat = strCatWith toText

{-# INLINE strCat #-}

instance StrCat TL.Text where

strCat = strCatWith toLazyText

{-# INLINE strCat #-}

instance StrCat TLB.Builder where

strCat = strCatWith toLazyTextBuilder

{-# INLINE strCat #-}

4 Re-designed Tree Printing

All abstractions and their implementations described so far allow us to provide an up-

dated realization of tree printing, previously defined and presented in [5]. The new

3 Compatible Abstraction for Concatenation

Early in the design phase it became apparent that we might use the Printable for string

concatenation. After all the concatenation may be viewed here as printing into the con-

catenating (string/text builder) object. To make things clear we provide the following

StrCat type-class, that is another useful abstraction in our library:

class StrCat c where

strCat :: (Foldable t)⇒ t c → c

Concatenation is being treated as a fold (e.g. see [3]) operation, that’s why we define

the strCat mechanism as taking place inside a Foldable.

Functional merging of StrCat and Printable takes place via the following strCatWith

procedure:

strCatWith :: (Printable m c,Foldable t)⇒ (m ()→ c)→ t c → c

strCatWith f = f ◦mapM print

{-# INLINE strCatWith #-}

This immediately allows us to provide StrCat implementations for String and ShowS:

instance StrCat String where

strCat = strCatWith toString

{-# INLINE strCat #-}

instance StrCat ShowS where

strCat = strCatWith toShowS

{-# INLINE strCat #-}

The same approach applies to Text and TLB.Builder:

instance StrCat T.Text where

strCat = strCatWith toText

{-# INLINE strCat #-}

instance StrCat TL.Text where

strCat = strCatWith toLazyText

{-# INLINE strCat #-}

instance StrCat TLB.Builder where

strCat = strCatWith toLazyTextBuilder

{-# INLINE strCat #-}

4 Re-designed Tree Printing

All abstractions and their implementations described so far allow us to provide an up-

dated realization of tree printing, previously defined and presented in [5]. The new

76

 Monadic Printing Revisited ...

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

77

Grzanek K.

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

doPrintTree node adjacent show maxDepth level

lastChildMarks isFirst = do

let s = show node

pfx = if isFirst then empty else eol

repr = if level ≡ 0

then P.strCat [pfx,s]
else P.strCat [pfx,genIndent lastChildMarks,s]

P.print repr

unless (level ≡ maxDepth)$ do

let children = toList $ adjacent node

forM (zip children (markLast children))$ λ (child, isLast)→
doPrintTree child adjacent show maxDepth (level+1)
(isLast : lastChildMarks) False

All the printing, concatenation and string-building abstractions allowed us to achieve

two goals:

1. Make the implementation clear and obvious.

2. Make the API expressive.

The clarification seems apparent here, and the expressiveness enhancement takes place

thanks to powerful compile time abstractions provided in the signature: Printable, Fold-

able, Adjs, Show.

4.3 Further Implementation Details

String concatenation abstraction is also used to implement properly the indentation used

to layout the printed tree:

genIndent :: Symbolic s ⇒ [Bool]→ s

genIndent [] = empty -- should not happen anyway

genIndent (isLast : lastChildMarks) = P.strCat [prefix,suffix]
where

indentSymbol True = emptyIndent

indentSymbol False = indent

suffix = if isLast then forLastChild else forChild

prefix = P.strCat $ fmap indentSymbol $ reverse $ init lastChildMarks

Additionally we use a Symbolic type class that holds the information about all textual

elements forming the tree printing layout. The abstraction is defined as:

class P.StrCat s ⇒ Symbolic s where

indent :: s

emptyIndent :: s

forChild :: s

forLastChild :: s

eol :: s

empty :: s

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

76

 Monadic Printing Revisited ...

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

77

Grzanek K.

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

doPrintTree node adjacent show maxDepth level

lastChildMarks isFirst = do

let s = show node

pfx = if isFirst then empty else eol

repr = if level ≡ 0

then P.strCat [pfx,s]
else P.strCat [pfx,genIndent lastChildMarks,s]

P.print repr

unless (level ≡ maxDepth)$ do

let children = toList $ adjacent node

forM (zip children (markLast children))$ λ (child, isLast)→
doPrintTree child adjacent show maxDepth (level+1)
(isLast : lastChildMarks) False

All the printing, concatenation and string-building abstractions allowed us to achieve

two goals:

1. Make the implementation clear and obvious.

2. Make the API expressive.

The clarification seems apparent here, and the expressiveness enhancement takes place

thanks to powerful compile time abstractions provided in the signature: Printable, Fold-

able, Adjs, Show.

4.3 Further Implementation Details

String concatenation abstraction is also used to implement properly the indentation used

to layout the printed tree:

genIndent :: Symbolic s ⇒ [Bool]→ s

genIndent [] = empty -- should not happen anyway

genIndent (isLast : lastChildMarks) = P.strCat [prefix,suffix]
where

indentSymbol True = emptyIndent

indentSymbol False = indent

suffix = if isLast then forLastChild else forChild

prefix = P.strCat $ fmap indentSymbol $ reverse $ init lastChildMarks

Additionally we use a Symbolic type class that holds the information about all textual

elements forming the tree printing layout. The abstraction is defined as:

class P.StrCat s ⇒ Symbolic s where

indent :: s

emptyIndent :: s

forChild :: s

forLastChild :: s

eol :: s

empty :: s

realization can be viewed as a whole in Kask.Data.Tree.Print module [7]. In the pres-

ence of the following import clauses:

import Control.Monad (unless, forM)
import Data.Foldable (toList)
import qualified Data.Text as T

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.Builder as TLB

import qualified Kask.Constr as C

import Kask.Data.List (markLast)
import qualified Kask.Print as P

import Prelude hiding (Show,show)

we have the basic type definitions like below:

type Adjs a t = Foldable t ⇒ a → t a

type Show a s = Symbolic s ⇒ a → s

type Depth = C.Constr (C.BoundsConstr C.Positive) Int

One additional visible change with respect to mechanisms defined in [5] relates to Depth

- a new data type that describes the maximum depth of tree-printing. Currently it is

a positive integer, with the contract enforced by using Constr and BoundsConstr, an

effective compile-time contract definition routines, also provided by the kask repository.

4.1 Tree Printing API

Essentially it consists of a single procedure printTree with the following signature and

implementation:

printTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Maybe Depth → m ()

printTree node adjacent show maxDepth =
doPrintTree node adjacent show (case maxDepth of

Just d → C.unconstr d−1

Nothing → maxBound)
0 -- initial level is 0-th

[True] -- node has no siblings

True -- .. and it is the first one

4.2 Simplified and More Expressive Tree Printing Implementation

The procedure takes the following form:

doPrintTree :: (P.Printable m s,Symbolic s,Foldable t)⇒
a → Adjs a t → Show a s → Int → Int → [Bool]→ Bool → m ()

78

 Monadic Printing Revisited ...

with the following realization for String and ShowS:

instance Symbolic String where

indent = " "

emptyIndent = " "

forChild = " "

forLastChild = " "

eol = "\n"

empty = ""

instance Symbolic ShowS where

indent = showString (indent :: String)
emptyIndent = showString (emptyIndent :: String)
forChild = showString (forChild :: String)
forLastChild = showString (forLastChild :: String)
eol = showString (eol :: String)
empty = showString (empty :: String)

Finally, we also provide an implementation for Text:

instance Symbolic T.Text where

indent = T.pack (indent :: String)
emptyIndent = T.pack (emptyIndent :: String)
forChild = T.pack (forChild :: String)
forLastChild = T.pack (forLastChild :: String)
eol = T.pack (eol :: String)
empty = T.pack (empty :: String)

instance Symbolic TL.Text where

indent = TL.pack (indent :: String)
emptyIndent = TL.pack (emptyIndent :: String)
forChild = TL.pack (forChild :: String)
forLastChild = TL.pack (forLastChild :: String)
eol = TL.pack (eol :: String)
empty = TL.pack (empty :: String)

and for TLB.Builder:

instance Symbolic TLB.Builder where

indent = TLB.fromText (indent :: T.Text)
emptyIndent = TLB.fromText (emptyIndent :: T.Text)
forChild = TLB.fromText (forChild :: T.Text)
forLastChild = TLB.fromText (forLastChild :: T.Text)
eol = TLB.fromText (eol :: T.Text)
empty = TLB.fromText (empty :: T.Text)

79

Grzanek K.

with the following realization for String and ShowS:

instance Symbolic String where

indent = " "

emptyIndent = " "

forChild = " "

forLastChild = " "

eol = "\n"

empty = ""

instance Symbolic ShowS where

indent = showString (indent :: String)
emptyIndent = showString (emptyIndent :: String)
forChild = showString (forChild :: String)
forLastChild = showString (forLastChild :: String)
eol = showString (eol :: String)
empty = showString (empty :: String)

Finally, we also provide an implementation for Text:

instance Symbolic T.Text where

indent = T.pack (indent :: String)
emptyIndent = T.pack (emptyIndent :: String)
forChild = T.pack (forChild :: String)
forLastChild = T.pack (forLastChild :: String)
eol = T.pack (eol :: String)
empty = T.pack (empty :: String)

instance Symbolic TL.Text where

indent = TL.pack (indent :: String)
emptyIndent = TL.pack (emptyIndent :: String)
forChild = TL.pack (forChild :: String)
forLastChild = TL.pack (forLastChild :: String)
eol = TL.pack (eol :: String)
empty = TL.pack (empty :: String)

and for TLB.Builder:

instance Symbolic TLB.Builder where

indent = TLB.fromText (indent :: T.Text)
emptyIndent = TLB.fromText (emptyIndent :: T.Text)
forChild = TLB.fromText (forChild :: T.Text)
forLastChild = TLB.fromText (forLastChild :: T.Text)
eol = TLB.fromText (eol :: T.Text)
empty = TLB.fromText (empty :: T.Text)

References

1. Peyton Jones S., 1987, The Implementation of Functional Programming Languages,

Prentice-Hall International Series in Computer Science. Prentice Hall International

(UK) Ltd

2. Lipovaca M., 2011, Learn You a Haskell for Great Good!: A Beginners Guide, No

Starch Press; 1st edition (April 21, 2011)

3. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in Com-

puter Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

4. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

5. Grzanek K., 2014, Monadic Tree Print, JACSM 2014, Vol. 6, No. 2, pp. 147-157

6. GitHub, 2016, Kask.Print module: Kask repository,

https://github.com/kongra/kask/blob/master/src/Kask/Print.hs

7. GitHub, 2016, Kask.Data.Tree.Print module:

https://github.com/kongra/kask/blob/master/src/Kask/Data/Tree/Print.hs

78

 Monadic Printing Revisited ...

with the following realization for String and ShowS:

instance Symbolic String where

indent = " "

emptyIndent = " "

forChild = " "

forLastChild = " "

eol = "\n"

empty = ""

instance Symbolic ShowS where

indent = showString (indent :: String)
emptyIndent = showString (emptyIndent :: String)
forChild = showString (forChild :: String)
forLastChild = showString (forLastChild :: String)
eol = showString (eol :: String)
empty = showString (empty :: String)

Finally, we also provide an implementation for Text:

instance Symbolic T.Text where

indent = T.pack (indent :: String)
emptyIndent = T.pack (emptyIndent :: String)
forChild = T.pack (forChild :: String)
forLastChild = T.pack (forLastChild :: String)
eol = T.pack (eol :: String)
empty = T.pack (empty :: String)

instance Symbolic TL.Text where

indent = TL.pack (indent :: String)
emptyIndent = TL.pack (emptyIndent :: String)
forChild = TL.pack (forChild :: String)
forLastChild = TL.pack (forLastChild :: String)
eol = TL.pack (eol :: String)
empty = TL.pack (empty :: String)

and for TLB.Builder:

instance Symbolic TLB.Builder where

indent = TLB.fromText (indent :: T.Text)
emptyIndent = TLB.fromText (emptyIndent :: T.Text)
forChild = TLB.fromText (forChild :: T.Text)
forLastChild = TLB.fromText (forLastChild :: T.Text)
eol = TLB.fromText (eol :: T.Text)
empty = TLB.fromText (empty :: T.Text)

79

Grzanek K.

with the following realization for String and ShowS:

instance Symbolic String where

indent = " "

emptyIndent = " "

forChild = " "

forLastChild = " "

eol = "\n"

empty = ""

instance Symbolic ShowS where

indent = showString (indent :: String)
emptyIndent = showString (emptyIndent :: String)
forChild = showString (forChild :: String)
forLastChild = showString (forLastChild :: String)
eol = showString (eol :: String)
empty = showString (empty :: String)

Finally, we also provide an implementation for Text:

instance Symbolic T.Text where

indent = T.pack (indent :: String)
emptyIndent = T.pack (emptyIndent :: String)
forChild = T.pack (forChild :: String)
forLastChild = T.pack (forLastChild :: String)
eol = T.pack (eol :: String)
empty = T.pack (empty :: String)

instance Symbolic TL.Text where

indent = TL.pack (indent :: String)
emptyIndent = TL.pack (emptyIndent :: String)
forChild = TL.pack (forChild :: String)
forLastChild = TL.pack (forLastChild :: String)
eol = TL.pack (eol :: String)
empty = TL.pack (empty :: String)

and for TLB.Builder:

instance Symbolic TLB.Builder where

indent = TLB.fromText (indent :: T.Text)
emptyIndent = TLB.fromText (emptyIndent :: T.Text)
forChild = TLB.fromText (forChild :: T.Text)
forLastChild = TLB.fromText (forLastChild :: T.Text)
eol = TLB.fromText (eol :: T.Text)
empty = TLB.fromText (empty :: T.Text)

References

1. Peyton Jones S., 1987, The Implementation of Functional Programming Languages,

Prentice-Hall International Series in Computer Science. Prentice Hall International

(UK) Ltd

2. Lipovaca M., 2011, Learn You a Haskell for Great Good!: A Beginners Guide, No

Starch Press; 1st edition (April 21, 2011)

3. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in Com-

puter Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

4. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

5. Grzanek K., 2014, Monadic Tree Print, JACSM 2014, Vol. 6, No. 2, pp. 147-157

6. GitHub, 2016, Kask.Print module: Kask repository,

https://github.com/kongra/kask/blob/master/src/Kask/Print.hs

7. GitHub, 2016, Kask.Data.Tree.Print module:

https://github.com/kongra/kask/blob/master/src/Kask/Data/Tree/Print.hs

