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Abstract 
Nonnegative matrix factorization (NMF) is a popular dimension reduction 
technique used for clustering by extracting latent features from high-
dimensional data and is widely used for text mining. Several optimization 
algorithms have been developed for NMF with different cost functions. In this 
paper we evaluate the correntropy similarity cost function. Correntropy is a 
nonlinear localized similarity measure which measures the similarity between 
two random variables using entropy-based criterion, and is especially robust to 
outliers. Some algorithms based on gradient descent have been used for 
correntropy cost function, but their convergence is highly dependent on proper 
initialization and step size and other parameter selection. The proposed general 
multiplicative factorization algorithm uses the gradient descent algorithm with 
adaptive step size to maximize the correntropy similarity between the data 
matrix and its factorization. After devising the algorithm, its performance has 
been evaluated for document clustering. Results were compared with 
constrained gradient descent method using steepest descent and L-BFGS 
methods. The simulations show that the performance of steepest descent and L-
BFGS convergence are highly dependent on gradient descent step size which 
depends on σ parameter of correntropy cost function. However, the 
multiplicative algorithm is shown to be less sensitive to σ parameterand yields 
better clustering results than other algorithms. The results demonstrate that 
clustering performance measured by entropy and purity improve the clustering. 
The multiplicative correntropy-based algorithm also shows less variation in 
accuracy of document clusters for variable number of clusters. The convergence 
of each algorithm is also investigated, and the experiments have shown that the 
multiplicative algorithm converges faster than L-BFGS and steepest descent 
method.  

Key words: Nonnegative Matrix Factorization (NMF), Correntropy, 
Multiplicative Algorithm, Document Clustering 
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1 Introduction  

Large size of data is one of the central issues in data analysis research. 
Processing these large amounts of data opens new issues related to data repre-
sentation, disambiguation, and dimensionality reduction. A useful representa-
tion typically makes latent structure in the data explicit, and often reduces the 
dimensionality of the data so that additional computational methods can be 
applied. In this process it is important to reduce the data size without losing its 
most essential features. Therefore, a common ground in the various approach-
es of data mining is to replace the original data with a lower dimensional re-
presentation obtained via subspace approximation [1, 2, 4]. 

There are several methods to reduce the dimensionality of large data such 
as Principal Component Analysis (PCA), Singular Value Decomposition 
(SVD) and Independent Component Analysis (ICA). Often the data to be ana-
lyzed is nonnegative, and the low-rank data are further required to be com-
prised of nonnegative values in order to avoid contradicting physical realities. 
However, these classical tools cannot guarantee to maintain the nonnegativity 
[1]. Therefore, an approach of finding reduced rank nonnegative factors to 
approximate a given nonnegative data matrix becomes a natural choice. The 
Nonnegative Matrix Factorization (NMF) approach allows to create a lower 
rank data out of original data, while maintaining nonnegativity of matrices 
entries [1, 2, 3]. 

The NMF technique approximates a data matrix  with the product of low 
rank matrices and , such that  and the elements of  and  are 
nonnegative [1,2]. If columns of would be data samples, then the columns of 

can be interpreted as basis or parts from which data samples are formed, 
while the columns of  give the contribution of each basiswhich when com-
bined form the corresponding data sample. In application of NMF to cluster-
ing, it is common to define clusters based on each basis vector, and assigning 
each data sample to a cluster based on basis contribution intensity which is 
found from matrix . 

Several cost functions have been used in the literature to implement the 
NMF for various types of applications and data type. Euclidean distance is the 
most common cost function used for many applications including text mining 
[1]. Kullback-Leibler divergence (KL-divergence) [1, 2], -divergence [21, 
22] are among other methods also used for different applications. However, 
the main issue is to find the matrix factors ( ) that minimize the chosen 
cost function. There are several optimization algorithms in the literature to 
perform this optimum decomposition [3, 4, 8, 10, 11, 12]. Correntropy simi-
larity function is a recently proposed cost function which has been used for 
different tasks of pattern recognition [23]. It has been introduced to NMF only 
recently in [24, 25, 26].  In this paper, a multiplicative algorithm for corren-

Asl E. H., Zurada J. M. 

91 

tropy-based NMF (MACB-NMF) has been developed and its performance has 
been investigated in comparison to general gradient descent method for doc-
ument clustering application using several metrics. 

This paper is organized as follows. Section 2 introduces the correntropy 
cost function. Section 3 discusses some developed optimization algorithms for 
NMF. In section 4, a multiplicative update algorithm for correntropy cost 
function (MACB) is presented. Experiments on real data set are presented in 
Section 5. The discussion and conclusions are presented in Section 6.  

2 Correntropy Similarity Function 

Given a data matrix � � ���� and a positive integer � � ��� ��� ��, find 
nonnegative factorization into matrices � � ���� and � � ���� as 
 

  �(�|��)������  ������� �� � � �� � � �                              (�) 
where: 

� � �expresses nonnegativity of the entries of �(and not semidefinite 
positiveness),  
�(�|��)isa measure for goodness of fit such that 

  

�(�|��) = � � �(�����|������) 
�

���
                                    (2)

�

���
 

 
where: 

d(x|y) is a scalar cost function [22].  
Several cost function are used and most of them use the Bregman diver-

gence [7]. Generally, a divergence function is defined as follows 

  

��(�� �) = �� �� � ��

� + ��(� � �)     � � � (����
�(���� � ����) + (� � �)     � � = �

                    (3) 

where: 
� is chosen to define the type of the divergence function.  

Obviously, ��(�� �) = (� � �)� is the Euclidean distance function, and 
��(�� �) defines KL-divergence [13]. The most common function found in 
literature is shown below 
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����������(�|��) � � � 1
2

�

���

�

���
���� − (��)����                   (4) 

  

Using the above notation, the correntropy cost function is defined as 

  

������������(�|�) � −��� �−(� − �)�

2�� �                               (�) 

  

������������(�|��) � − � � ��� �−���� − (��)����

2�� �
�

���

�

���
                   (6) 

  

where: 
�is a parameter of correntropy measure.  

The optimization algorithms try to minimize the correntropy, since it is a 
similarity instead of distance between two elements. The algorithm for mini-
mizing these cost functions is introduced in the next section. 

3 Optimization Algorithms 

A key issue of NMF factorization is to minimize the cost function while 
keeping elements of � and � matrices nonnegative. Another challenge is the 
existence of local minima due to non-convexity of �(�|��) in both �and 
�. Moreover, a unique solution to NMF problem does not exist, since for any 
invertible matrix � whose inverse is ���, a term ������ could also be 
nonnegative. This is most probably the main reason for non-convexity of 
�(�|��) function [13]. 

Several algorithms exist for minimizing cost functions in the NMF context. 
Lee and Seung [1, 2] developed a multiplicative algorithm for solving Eucli-
dean and KL-divergence in 2001. Sparse Coding and sparseness constraint 
which impose sparsity on � matrix was proposed by Hoyer in 2002 and 2004 
[3, 5]. Alternating  Least Square (ALS) [12], ALS using projected gradient 
descent (ALSPGRAD) [14], gradient descent with constrained least square 
(GD-CLS) [9], Quasi Newton method [11], Alternating Nonnegative Con-
strained Least Squares (ANLS) using active set and block principal pivoting 
[17, 20], Hierarchical Alternating Least Square (HALS) [19] was proposed for 
Euclidean cost function. Fevotte et al proposed several algorithms for mini-
mizing β-divergence cost function [21, 22]. In 2012, Li et al convert general 
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Bregman divergence to Euclidean distance function using Taylor expansion 
and solve the corresponding function using HALS algorithm [25]. Du et al 
proposed a half-quadratic optimization algorithm to solve NMF based on cor-
rentropy cost function and developed a multiplicative algorithm for resulting 
weighted NMF [26]. 

In 2012, Ensari et al used general algorithms of Constrained Gradient Des-
cent (CGD) method for solving the correntropy function [18] and compared 
the results with projected gradient descent method of Euclidean cost function 
[24, 25]. The major disadvantage of CGD is its dependency on � parameter of 
correntropy cost function. As will be shown in the next section, the update 
rate of CGD algorithm is based on this parameter. In the next section, we de-
rive the CGD algorithm based on multiplicative update rule which has adap-
tive update learning rate and less sensitivity to variation of � parameter. 

4 Multiplicative Algorithm for Correntropy-based NMF 

This section proposes a multiplicative algorithm for correntropy cost func-
tion (MACB). To minimize (6) using gradient descent algorithm, its gradient 
should be taken with respect to  � and � matrices’ elements which are para-
meters of cost function. The gradients ∇������ ∇�(��)are calculated as fol-
lows, 
  

∇�(��(�‖��)) = 1 ��� ���� �−(� − ��)�

��� � �(�� − �)� ��   (7) 
   

∇�(��(�‖��)) = 1 ��� �� �(�� − �)���� �−(� − ��)�

��� ��     (8) 
 
where: 

⊙is the element-wise product of two matrices.  
As can be seen from Equations(7) and (8), the gradient formula involves 

the step size in the direction of gradient that is proportional to 1 σ�⁄  parame-
ter. Therefore, the gradient step variation could cause the solution to deviate 
from the limit points of the feasible region. This may result in unsatisfactory 
solution for �and �. 

The multiplicative gradient descent approach is equivalent to updating 
each parameter by multiplying its value at previous iteration by the ratio of 
the negative and positive parts of the gradient of the cost function with regard 
to this parameter [2, 11]. Suppose there is a function �(�) which should be 
minimized over �. Gradient descent using multiplicative algorithm is equiva-
lent to, 
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� �  � [� � (�)]�
[� � (�)]�

               (1) 

where: 

                                    �� (�) = [� � (�)]� −  [� � (�)]�       (10) 

and the summands are both nonnegative.This ensures nonnegativity of the 
parameter updates, provided initializationis with a nonnegative value. A fixed 
point �⋆ of the algorithm implies either �� (��) = 0 or �⋆ = 0[21, 22]. We 
apply this algorithm on Correntropy function gradients, Equations (7) and (8), 
and derive the update formula for � and � matrices respectively as follows, 

  

� � � [∇�(��(�‖��))]�
[∇�(��(�‖��))]�

                                       (11) 
   

� � � ⊙
�exp �−(� − ��)�

2�� � ⊙ �� ��

�exp �−(� − ��)�
2�� � ⊙ (��)� ��

                        (12) 

   

� � � [∇�(��(�‖��))]�
[∇�(��(�‖��))]�

                                        (13) 
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As can be seen from Equations (12) and (14), the � parameter is in nume-
rator and denominator of update algorithm, which reduce the effect of varia-
tion of this parameter to the update algorithm. Although, we do not prove the 
non-increasing property of multiplicative update algorithm with Correntropy 
criterion analytically, the experimental results show that it is monotonic and 
non-increasing. It also give better results in comparison to other gradient des-
cent methods. Therefore, MACB algorithm for NMF is as follows: 

 
MACB-NMF Algorithm: 
(1) Initialize � and � with nonnegative values, and scale the columns of � 

to unit norm. 
(2) Iterate until convergence or for � iterations: 
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5 Experiments 

This section outlines the design procedure of an experiment to test MACB 
algorithm. We employ Reuters Documents Corpus for document clustering. 
This original dataset contains 21578 documents and 135 topics or document 
clusters created manually. Each document in the corpus is been assigned one 
or more topics or category labels based on its content. The size of each cluster 
which is the number of documents it contains, range from less than ten to four 
thousand. For this experiment, documents associated with only one topic are 
used and topics which contain less than five documents are discarded [9]. 
Therefore, 8293 documents with 48 topics were left at the end.  In order to 
evaluate the performance of the MACB for increasing complexity, i.e., the 
number of clusters to be created or the � parameter, ten different � values of 
[2, 4, 6, 8, 10, 15, 20, 30, 40, 48] are chosen. 

After creating clusters using NMF, the cluster is assigned to a most related 
document topic. For this purpose, a matrix which shows the distribution of all 
documents between each created cluster and dataset topics is created. The ma-
trix’s dimension is � � �, which � is the number of clusters and � is the number 
of topics. This matrix is called Document Distribution Matrix (DDM). The 
maximum value at each column of DDM is found first. Then, the correspond-
ing document topic related to this column is assigned to the NMF cluster re-
lated to the row number. At the end of this process, there may be some NMF 
clusters which are not assigned to any topic. Some of these clusters may con-
tain large number of documents, and omitting them may reduce the accuracy 
metric. To assign these NMF clusters to a topic, the maximum value found in a 
row of DDM related to any of these NMF clusters is used for the topic assign-
ment. It turns out that the related column of the founded value indicates the 
topic to be assigned. This method may results in assigning some of NMF clus-
ters to more than one topic. 

We evaluate the clustering performance with Accuracy, Root Mean Square 
Residual (RMSR), Entropy, Purity, and computational time metrics. Accuracy 
of clustering is assessed using the metric �� used by [4] is defined 
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where: 

�(��) is set to 1 if �� has the same topic label for both NMF cluster 
and the original topic, and otherwise set to 0,  
� is the total number of documents in the collection.  

The RMSR between � and �and � matrix is dened as: 
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Total entropy for a set of clusters is calculated as the weighted mean of the 
entropies of each cluster weighted by the size of each cluster [8]. Using DDM, 
we compute ��� for topic �, the probability that a member of cluster � belongs 
to topic � as ��� � ��� ��⁄ , where �� is the number of objects in cluster � and 
��� is the number of documents of topic � in cluster �. Entropy of each cluster 
is defined as: 
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where: 
� is the number of topics.  

Entropy of the full data set as the sum of the entropies of each cluster 
weighted by the size of each cluster: 
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where: 
� is the number of NMF clusters, 
� is the total number of documents. 
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Purity measures the extent to which each NMF cluster contained docu-
ments from primarily one topic [16]. Purity of a NMF clustering is obtained 
as a weighted sum of individual NMF cluster Purity values and is given by 
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where: 
��is a particular NMF cluster of size ��,  
��

�is the number of documents of the � � �� topic that were assigned 
to the � � �� NMF cluster,  
�is the number of clusters, 
�is the total number of documents.  

In general, the larger the Purity value, the better the clustering solution. 
We also compute the computational time taken by each minimization algo-
rithms in terms of CPU time measured in second. 

For performance evaluation of MACB, the results of this algorithm were 
compared to Steepest Descent (SD) and L-BFGS methods of gradient descent 
algorithm implemented in MATLAB [18], and robust Correntropy Induced 
Metric (rCIM) [26]. For each algorithm, three clustering experiments were 
executed based on normalization of � and � matrices. As mentioned before, 
NMF does not have a unique solution, and it is better to normalize either W or 
H to have a consistent factorization of a particular dataset when using differ-
ent algorithms. This procedure is also taken to investigate the effect of norma-
lization of these � and � matrices on the clustering result. Therefore, we 
implement three experiments for each algorithm, one without normalization, 
another using normalization of � matrix’s columns, and the last one with 
normalization on each row of � matrix. 

Since � value has an effect on update learning rate of SD, L-BFGS and 
rCIM algorithms, improper selection of �could result in poor clustering. 
However, � value have a small effect on MACB update algorithm, because 
the effect of � is significantly decreased by the division in formula of MACB 
algorithm. Moreover, the learning rate is adaptive and is proportional to � 
and � matrices in each step of MACB algorithm. By implementing several 
experiments, we realize that the best value which yields the highest AC, low-
est Entropy and highest Purity in clustering for each algorithm is � = 1. We 
continue the experiment with three methods of normalization for MACB algo-
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rithm and compare them to -normalized case (normalization on each col-
umn of  matrix) for SD, L-BFGS, and rCIM algorithms with  for 
three algorithms of optimization. AC, Entropy and Purity of clustering are 
shown in Figure 1-3 respectively, 

 

Figure 1. Accuracy of SD, L-BFGS, rCIM, and MACB algorithm 
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Figure 2. Entropy of SD, L-BFGS, and MACB algorithm 

 

Figure 3. Purity of SD, L-BFGS, and MACB algorithm 
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It is clear that MACB algorithm yields smaller Entropy and higher Purity 
for all values of �. However, SD, L-BFGS, and rCIM algorithms have low 
Entropy and high Purity only for � � ��������. On the other hand, MACB 
have a consistent change in AC, Entropy, and Purity for different values of �. 
Moreover, as � increase, the quality of clustering improves for MACB. To 
have a good comparison between all algorithms, we select two values of � 
which results in highest AC, lowest Entropy and highest Purity. According to 
Fig.1-3, these metrics occurs in � � ���� ���. Therefore we tabulate the clus-
tering result of each algorithm for corresponding � values in Table 1 and 2. 

Tables 1 and 2 indicate that MACB algorithm give better Entropy and Pur-
ity in comparison to the other algorithms. The RMSR metric is also small for 
MACB algorithm, while this metric is too large for SD, L-BFGS and rCIM. 
This indicates a large error between ��and�. One may notice that the com-
putational time of MACBand rCIM algorithms is higher than SD and L-BFGS 
algorithms. The reason is that in each step of algorithm, there are two multip-
lications and divisions for updating � and � in MACB and rCIM algorithms, 
which do not exist in SD and L-BFGS algorithms. The multiplication and 
division of these large matrices are highly computational and time consuming. 

As a result, we can conclude that the computed � and � matrices using 
MACB algorithm offer the best approximation of documents dataset among 
other correntropy-based NMF. The minimization of correntropy cost function 
for 40 iterations is shown in Fig.4 for all algorithms. It demonstrates that 
MACB algorithm has a faster convergence than SD, L-BFGS and rCIM algo-
rithms. Gradient minimization curve for � � ����������� is shown in Figure 
5. It indicates that as the value of � increases, the gradient minimizes more 
slowly. This implies that the algorithm reaches the limit point of feasible re-
gion, and the constraint of nonnegativity does not allow the optimization algo-
rithm to converge. We propose that other algorithms like alternating least 
square method with nonnegativity constraint and hierarchical ALS could be 
investigated on this case for future work. 

Table 1. Comparison between performance of different NMF algorithms, k=15 

 
Algorithm RMSR Accuracy Entropy Purity CPU  

time (sec) 
SD 1983 0.9401 2.8834 0.4582 552 
L-BFGS  2517 0.1469 2.8634 0.4496 602 
MACB  
(W-normalized) 0.3328 0.5530 1.8920 0.6514 2353 

MACB  
(H-normalized) 0.3328 0.7528 1.9191 0.6551 2353 
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Table 2. Comparison between performance of different NMF algorithms, k=20 

 
Algorithm RMSR Accuracy Entropy Purity CPU  

time (sec) 
SD 53594 0.8961 2.8616 0.4527 535 
L-BFGS  17.75 0.6274 2.8399 0.4496 605 
Multiplicative 
(W-normalized) 0.9776 0.5507 1.8094 0.6475 2513 

Multiplicative 
(H-normalized) 0.9776 0.5360 1.8567 0.6479 2513 

 

 

Figure 4. Correntropy cost function minimization curve 
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Figure 5. History of norm of cost function’sgradient 

6 Conclusion  

In this paper, a multiplicative algorithm for NMF based on correntropy 
cost function is developed. Its performance was tested on the Reuters Docu-
ment Corpus for document clustering.  The clustering result is also compared 
to gradient descent algorithm using SD and L-BFGS algorithms using com-
mon clustering evaluation measures. The minimization curve and curve of 
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Figure 5. History of norm of cost function’sgradient 

6 Conclusion  
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Abstract 
Electric energy stored insupercapacitors is associated with ion movement 
between the porous electrodes . This phenomenon can be described by 
dielectric relaxation model. Cole-Davidson relaxation model application 
reported in publications is difficult to use for control purposes. In the paper for 
impedance of the supercapacitors description Cole-Cole relaxation model is 
applied. For impedance parameters identification Nedler-Mead simplex method 
is used. Supercapacitor impedance model simplification based on physical 
properties is presented. Such model can be easy used for calculations in Matlab 
environment with FOTF toolbox designed to fractional calculus. The example 
of modeling of dynamic system with supercapacitor impedance model is 
described. The effects of the simulation show that fractional model of 
superapacitors is important tool for exact description of its dynamics. 

Key words: Supercapacitor modeling, Cole-Cole relaxation model, fractional 
calculus, control systems 

1 Introduction 

Supercapacitors are electronic elements having the properties between 
electrolytic capacitors and accumulators. Capacitance of the supercapacitors 
reaches several thousands of farads. They can reach energy and power densi-
ties of more than 10 Wh/kg and 10 kW/kg respectively. The possibility of 
large electric charge storage is obtained due to porous electrodes made of 
active carbon, graphene, carbon nanotubes or aerogel. Supercapacitors are 
used in many applications: for protection of computers from input power in-
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terruptions, as power supply of robots, toys, electric toothbrushes etc. Recent-
ly they are increasingly used in electric vehicles for braking energy storage 
and its delivery during acceleration. 

Electric energy stored insupercapacitors is associated with ion movement 
between the porous electrodes of large surface and relatively large resistance. 
This phenomenon causes that the typical equivalent models of capacitors that 
contain one or two lumped parameter RC circuits are not sufficient for accu-
rate representation of dynamic properties of the supercapacitors. In the result, 
for this purpose, the complex equivalent schemes with many connected RC 
elements [1] or fractional differential equations [2, 3] are used. 

In the paper, for impedance of the supercapacitors description fractional 
order calculus and model of dielectric relaxation are applied. Dielectric relax-
ation can be described by few models [4]. It was reported that Cole-Davidson 
model application is well for exact modeling of the supercapacitors [4, 5, 6] 
but its application in automation is difficult. The paper presents Cole-Cole 
model application for such purposes. 

2 Cole-Cole and Cole-Davidson models of supercapacitor 
impedance 

Classic Debye model of ideal dielectric relaxation is in practice replaced 
by its empiric modifications [4]. Such modification is presented by Havriliak-
Negami model of complex dielectric constant, expressed as equation  

���(��) � �� + �����
���(���)���,  � � � � � 0<� � �, (1) 

where 
ε∞ – infinite frequency dielectric constant, 
εs – static frequency dielectric constant, 
T–characteristicrelaxation time of the medium. 

For γ=1 equation (1) becomes Cole-Cole equation 

���(��) � �� + �����
��(���)�,  where � � � � � (2) 

and for δ=1 it becomes Cole-Davidson equation 

���(��) � �� + �����
(�����)�, where � � � � � (3) 

Parameters δ and γ are determined experimentally.  
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Figure1. Equivalent circuit of supercapacitor 

The expression of the real supercapacitor impedance can be based on one 
of above equations of complex dielectric constants but it should also contain 
parallel leakage resistance Ru and serial equivalent resistance Rc (Figure 1) 
[5, 6]. As a result supercapacitor impedance is given by equation   

Z(��) = R� +
�� 1

���(��)
�� + 1

���(��)
 (4) 

where capacitance C(jω) is proportional to complex dielectric constant (1). 
Additionally, for the supercapacitors, can by assumed that 

ε� ≪ ε� (5) 

Let us replace Fourier transform with Laplace transform. Impedance of su-
percapacitor Z(s) can be treated as fractional transfer function G(s) with cur-
rent input signal transform I(s) and voltage output signal transform V(s). On 
the basis of Cole-Davidson model (3), equations (4) and (5) one obtains the 
expression of supercapacitor impedance [5, 6] 

R

Ru C(jω)=C0ε(jω
)
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���(s) =
V(s)
I(s) = Rc +

��
(1 + sT)�

��
�� +

(1 + sT)�
��

=
�1 + ��

��� (1 + ��)� + ����
1
�� (1 + ��)� + ��

 (6) 

Transfer function is commonly in automation presented as [2, 3] 

�(�) = ����� + �����+�+ ��������� + �����
���∝�+���∝� + �+ ��������� + ���∝�  (7) 

Such a form of fractional transfer function can be directly used for calcula-
tion e.g. applying numerical computing environment Matlab with FOTF tool-
box [7, 8] designed for fractional calculus. 

Unfortunately equation (6) can’t be directly expressed in form (7) because 
of presence binomial to a fractional power γ [6]. The same complications are 
connected with Havriliak-Negami model. 

To avoid that issue one can apply Cole-Cole model of dielectric relaxation 
given by expression (2). Using the same transformation as for Cole-Davidson 
model, one can obtain equation 

���(s) =
�1 + ��

��� + �� �1 + ��
��� �

� + ����
1
�� + �� �

�

�� + ��
 (8) 

Taking into consideration parameters of the supercapacitor equation (8) 
can be simplified. At the beginning it is worth to notice that serial resistance 
Rc is several order of magnitude lower than parallel leakage resistance Ru 

��
�� ≪ 1 (9) 

This inequality leads to expression 

���(s) =
�1 + ��

��� + �� �1 + ��
��� �

� + ����
1
�� + �� �

�

�� + ��
≅ 1 + ���� + ����

1
�� + �� �

�

�� + ��
 (10) 

Generally transfer function (10) can be written in form 
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���(s) =
1 � ���� � ����
1
�� � �� ���� � ��

= 1 � ���� � ���
�� � ���� � ��� (11) 

which corresponds to (7).  
Ruvalue can be determined from supercapacitor self-discharge curve. As a 

result the value of a0 coefficient is known 

�� =
1
�� (12) 

Taking into account the value of a0 and the following equality 

�� = �� (13) 

it can be written that 

�� =
��
�� = ���� (14) 

Summarizing, one can find that omitting Rc for determination of model 
(11) only 4 parameters should be identified:a2, b1, b2 and δ. This identification 
can be based on the measurements of complex impedance values for the ap-
propriate frequency range.  

 
Identification of model (11) parameters can be performed on basis of mi-

nimization of performance index 

�� =
1
�������(���) � ��(���)�

���(���)�
�
2�

�=1
 (15) 

where 
GCC – transfer function (11), 
Gp – measured frequency response of the supercapacitor, 
ωi – frequency of measured point. 

Chosen performance index corresponds to the variance of moduli of rela-
tive errors of the frequency response points, related to appropriate points of 
approximation function (11). For minimization purpose Nelder-Mead simplex 
method was used. This optimization problem is multi-modal so proper start 
point should be chosen. Fortunately the coefficients in expression (11) can be 
roughly estimated on the basis of estimation of supercapacitor physical para-
meters.  
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Measured frequency responses of supercapacitors presented in the paper, 
are based on data published in [5, 9, 10]. The example of transfer function 
calculated for 2700 F supercapacitor using data [10] is 

G��(s) =
1 + 0.869s�.��� + 0.632s

0.00200 + 0.00174s�.��� + 2020s (16) 

The result of the approximation of the frequency response (16) is presented 
in Figure 2. Another example is the impedance of the supercapacitorof 
0.047 F capacitance [5]. Its transfer function is 

G��(s) = 1000 1 + 2.44s�.��� + 1.65s
0.010 + 0.024s�.��� + 58.7s (17) 

The frequency diagram of (17) is shown in Figure 3.  
The basis for comparison of the accuracy of approximation for different 

supercapacitors can be performance index Jf (15).The square root of Jf corres-
ponds to standard deviation of the error. For supercapacitors taken into con-
sideration standard deviation of error is equal a few percent. 

 
 

 

Figure 2. Measured frequency response points (asterisks) and approximating func-
tion (16) for 2700 F supercpacitor 
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Figure 3. Measured frequency response points (asterisks) and approximating func-
tion (17) for 47 mF supercapacitor 

 

3 Cole-Cole model simplification and time response 

On the basis of the results of the impedance approximation of supercapaci-
tors of capacitance between 0.047 F and 2700 F it can be stated that for all 
those examples model (11) can be simplified. The denominator of expression 
(11) can be written as 

 (18) 

where 

 (19a) 

 (19b) 

It was proved that the ratio of   
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are based on data published in [5, 9, 10]. The example of transfer function 
calculated for 2700 F supercapacitor using data [10] is 

G��(s) =
1 + 0.869s�.��� + 0.632s

0.00200 + 0.00174s�.��� + 2020s (16) 

The result of the approximation of the frequency response (16) is presented 
in Figure 2. Another example is the impedance of the supercapacitorof 
0.047 F capacitance [5]. Its transfer function is 

G��(s) = 1000 1 + 2.44s�.��� + 1.65s
0.010 + 0.024s�.��� + 58.7s (17) 

The frequency diagram of (17) is shown in Figure 3.  
The basis for comparison of the accuracy of approximation for different 

supercapacitors can be performance index Jf (15).The square root of Jf corres-
ponds to standard deviation of the error. For supercapacitors taken into con-
sideration standard deviation of error is equal a few percent. 

 
 

 

Figure 2. Measured frequency response points (asterisks) and approximating func-
tion (16) for 2700 F supercpacitor 
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Figure 3. Measured frequency response points (asterisks) and approximating func-
tion (17) for 47 mF supercapacitor 

 

3 Cole-Cole model simplification and time response 

On the basis of the results of the impedance approximation of supercapaci-
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those examples model (11) can be simplified. The denominator of expression 
(11) can be written as 
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�(�) = |�����(�)|
|����(�)| ≪ 1 (20) 

which means that the term GCCd2 practically has no influence on frequency 
response of the supercapacitor. In Figure 4 are shown graphs of S(ω) for vari-
ous supercapacitors which frequency responses are presented in [5, 10].  

 

Figure 4. Frequency dependence of ratio S (18) for various supercapacitors 

It can be mentioned that S(ω) strongly depends on exponent δ value. Typi-
cal value of δ for the capacitors is between 0.5 and 0.9. Graph of S(ω) for 
0.6 F supercapacitor [10] is presented in Figure 5. Identified value of δ for this 
supercapacitor is 0.82. Other plots were calculated for hypothetical cases with 
lower values of δ. 

Basing on current analysis one can determine the simpler model of the im-
pedance of the supercapacitor. Omitting term GCCd2 the simplified expression 
is given as 

���(s) =
1 � ���� � ���

�� � ���  (21) 
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Figure 5. Ratio S(ω) for supercapacitor 0.6F 

Consequently the impedance of e.g. 0.33 F supercapacitor [5] can be writ-
ten as 

G��(s) =
1 + 13.5s�.��� + 0.632s
1.65e − 07 + 0.340s  (22) 

For the further analysis expression (21) can be decomposed into three sim-
ple fractions 

���(�) =
1 + ���� + ���

�� + ��� = ����(�) + ����(�) + ����(�) (23) 

where 

����(�) = �� (24a) 

����(�) =
��

1 + ���� (24b) 

δ=0.75 (hypothecical) 

δ=0.6 (hypothectical) 

δ=0.82 (identified) 
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����(�) =
������
1 + ���� (24c) 

In Figure 6 are shown moduli of frequency responses of each term of (23) 
and modulus of Gcc. The terms are asymptotes of Gcc(s). The slope of loga-
rithmic plots for Gcc2 is -20 dB per decade of frequency and the slope of Gcc3 
is -20*(1-δ) dB per decade of frequency. 

 

 

Figure6. Moduli of terms of equation (22) and modulus Gcc for supercapacitor 
0.33 F 

 
Voltage response of impedance (23) to current step is a sum of responses 

of mentioned 3 terms: proportional step, exponential response of large time 
constant RuC, and response dependent on fractional order term. The voltage 
response for I0 magnitude of current step can be written as 

���(�) = ℒ−1 ��0� ��� +
��

1 + ����
+ ������
1 + ����

�� = ���1(�) + ����(�) + ����(�) (25) 

where 

Gc3

Gcc

Gcc1 

Gc2

Orzyłowski M., Lewandowski M. 

115 

����(�) = ℒ�� ���� ��� = ���� (26a) 

����(�) = ℒ�� ���� �
��

� � ������ = ���� �� � ��� � ������� 
(26b) 

  

����(�) = �ℒ�� ���� �
������
� � �������

= ��(�� ��� �� �� �) 
(26c) 

For time t<<RuC the two first terms causes step summed with quasi-linear 
increase. The third term is responsible for initial non-linearity – Figure 7.   

 

 
Figure 7. Current step response of supercapacitor of 0.33 F 

 
 

4 Cole-Cole model application in control systems analysis 

It has been mentioned that for fractional calculus the numerical computing 
environment Matlab with FOTF toolbox [7] can be applied. Matlab environ-
ment is well known and widely used tool for modeling and simulation of 
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physical systems. Using Control Toolbox one can study and design control 
systems. FOTF toolbox enables fractional calculus providing functions for: 
− fractional transfer function object creation, 
− presentation of Bode and Nyquist plots of this transfer function, 
− calculation of time response on basis of transfer function and time input 

signal, 
− addition, subtraction, multiplication and inversion of created models,  
− feedback connection of such models, 
− determination whether system is stable. 

Presented example of FOTF toolbox application is design of resistor 
/capacitor voltage divider of inertial properties consisting of resistor R0=5kΩ 
and supercapacitor of C=0.1F (Figure 8). 

 

 
Figure 8. Scheme of the voltage divider 

 

This divider shown in Figure 8 is described by equation 

��(�) =
���(�)

�� + ���(�) = ���(�)��� + ���(�)��� (27) 

where 

G��(s) =
1 + 4.67s�.��� + 5.01s

5e − 08 + 0.1s  (28) 

One can specify FOFT object for (28) and enter it into MATLAB. Vectors 
formulated according to form (7) are input parameters of such an object. They 
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contain coefficients ai, bi and exponents of s defined in (21). For (28) these 
vectors (in the reverse order) are equal 

�� = [�� ��] = [0.1 5� − 08] (29a) 

�� = [1 0] (29b) 

�� = [�� �� 1] = [5.01 4.67 1] (29c) 

�� = [1 � 0] = [1 0.705 0] (29d) 

In the next step the FOFT objects of (28) and Ro should be created 
Gcc=fotf(wa,pa,wb,pb); 

R0=fotf([[1],[0],[5000],[0]); 

Then according to (26) these objects should be added 
G1=plus(R0,Gcc); 

inverted 
G1i=inv(G1); 

and multiplied 
Gd=mtimes(Gcc,G1i); 

The calculated transfer function of considered divider is equal to 

��(�) =
5� − 08 + �.�4� − 07��.��� + 0.1� + 0.470��.��� + 0.504��
5� − 08 + �.�4� − 07��.��� + 0.1� + 0.470��.��� + 51��  (30) 

This transfer function has been compared with transfer function of di-
vider with capacitor in which the relaxation phenomenon can be neglected. 
Impedance of such idealized capacitor of capacitance Ci=0.1 F is similar to 
(10)  

��(�) = �� +
�� 1

���
��� 1

���
≅ 1 + �����

1
�� + ���

= 1 + 5s
5e − 08 + 0.1s (31) 

Transfer function of the divider with this capacitor is 

���(�) =
��

�� + ��(�) =
��(1 + �����)

��(1 + �����) + ��(1 + �����) =
1 + 5�
1 + 505� (32) 
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Bode plots of Gd(s) and Gi(s) are compared in Figure 9. The influence of re-
laxation phenomenon on frequency response is distinct for higher frequencies. 

 
Figure 9. Bode plots of transfer functions of the dividers with supercapacitor and 

idealized capacitor 
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Figure 10. Step responses of the dividers 

 

 
Figure 11. Pulse responses of the dividers 
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The step responses of both dividers are presented in Figure 10. They are 

convergent with the time rise. The essential difference at the beginning of the 
time responses is presented by the plots of time responses to short input pulse 
of 0.2 s duration (Figure 11). 

Taking into account the difference between time and frequency responses 
of models of fractional and lumped parameters one can state that the fractional 
model of superapacitors can be important for exact description of its dynam-
ics. 

5 Conclusions 

The technical literature mostly concerns the supercapacitor models with 
Cole-Davidson relaxation model application. In the paper the computer model 
of supercapacitor impedance based on Cole-Cole relaxation modelis pre-
sented. Consequently the impedance has polynomial form commonly used in 
automation. It enables the analysis of various control systems containing su-
percapacitors. For this purpose Matlab environment with FOTF toolbox de-
signed to fractional calculus can be applied.  

In the studied examples Cole-Davidson model in general is a bit more 
accurate for frequency and time responses of real supercapacitor approxima-
tion but advantages connected with easy analysis and simulation of control 
systems is essential. The comparison of practical effects of both relaxation 
models application in control systems analysis will be subject of the next pub-
lications.  

In general it can be stated that the fractional model of superapacitors 
can be important tool for exact description of its dynamics. 
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Abstract 
It has been shown that application of assembly implementation of Streaming 
SIMD Extensions (SSE) shortens the time needed to apply filtration in two-
channel filter bank by tenfold, comparing to non-optimized version, written in 
Microsoft Visual C++ 2010 Express, without assembler extensions. 
The implementation described in this paper can be applied to computation of 
Discrete Wavelet Transform on general-purpose processors.. 

Key words: Orthogonal Filters, Discrete Wavelet Transform, SSE extensions 

1 Introduction 

Discrete Wavelet Transform (DWT) is applied to data compression, sys-
tem identification, signal approximation and interpolation, image processing 
and recognition as well as synthesis of digital watermarking [1-4]. 
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Figure 1. Diagram of one stage of analysis and synthesis of Discrete Wavelet Trans-
form. 

 



 

123 

IMPLEMENTATION OF THE WAVELET TRANSFORM  
WITH SSE EXTENSIONS 

Tadeusz Łyszkowski1, Tomasz Wiechno2, Mykhaylo Yatsymirskyy2 
1Higher Vocational State School in Wloclawek 

tadeusz.lyszkowski@pwsz.wloclawek.pl 
2Institute of Information Technology, Lodz University of Technology 

tomasz.wiechn@p.lodz.pl, mykhaylo.yatsymirskyy@p.lodz.pl 

Abstract 
It has been shown that application of assembly implementation of Streaming 
SIMD Extensions (SSE) shortens the time needed to apply filtration in two-
channel filter bank by tenfold, comparing to non-optimized version, written in 
Microsoft Visual C++ 2010 Express, without assembler extensions. 
The implementation described in this paper can be applied to computation of 
Discrete Wavelet Transform on general-purpose processors.. 

Key words: Orthogonal Filters, Discrete Wavelet Transform, SSE extensions 

1 Introduction 

Discrete Wavelet Transform (DWT) is applied to data compression, sys-
tem identification, signal approximation and interpolation, image processing 
and recognition as well as synthesis of digital watermarking [1-4]. 

 
 
 
 
 
 
 
 
 

z(n) 

synthesis analysis 

x(n) 

n=0,1,…,N-1 

y1(n) 

y2(n) 

n=0,1,…,N/2-1 

H 

G 

Q 

R 

n=0,1,…,N-1 

↓2 

↓2 

↑2 

↑2 

 

Figure 1. Diagram of one stage of analysis and synthesis of Discrete Wavelet Trans-
form. 

 



Implementation Of The Wavelet ... 

124 

Because of such wide and profound applications, there is a lot of research 
on the improvements of Fast Computational Algorithms for the Discrete 
Wavelet Transform [5-10]. The construction of the algorithm is based on pa-
rallel or pyramidal repetition of basic analysis stage for forward transform and 
a basic synthesis stage for inverse transform. The two channel biorthogonal 
filter banks shown on Figure 1. [11] are a classic model of such a transform. 

Blocks H, G, Q and R, are linear filters with finite impulse response H = 
h0,h1,...,hK-1, G = g0,g1,...,gK-1, Q = q0,q1,...,qK-1 i R = r0,r1,...,rK-1, where the 
length of the filter K is an even natural number. Blocks ↓2 and ↑2 denote, 
respectively, the operations of decimation in time of input sequence (down-
sampling) and upsampling by a factor of 2, i.e. inserting zeroes between each 
sample of a input sequence.The results of analysis stage of (forward) DWT 
can be expressed as two convolutions with decimation [12] 
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where hK,k ,gK,k  for k = 0,1,...,K-1 are impulse responses of filters HK, GK, 
and N is the length of input sequence.  

If coefficients of impulse responses of filters HK and GK are written in re-
versed order: 

h1K,k = hK,K-1-k, g1K,k = gK,K-1-k k = 0,1,...,K-1 

formulas (1) can be rewritten in the form (2) that is more convenient for 
implementation 
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From (2) it is clear that the time needed for computation of DWT ex-
pressed as a convolution, depends on the effectiveness of floating point mul-
tiplications and additions. Exploiting Data Level Parallelism this can be en-
hanced by the usage of Streaming SIMD Extensions (SSE) available on con-
temporary general-purpose processors. 
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The paper describes construction of assembler implementations of DWT 
algorithms (2) that make use of SSE. The algorithms are given for a number 
of filter lengths K = 6,8,10 and 12 and the results are compared with the refer-
ence algorithms written in pure C++. 

The problem solved in the paper is important as the majority of personal 
computers in use, is equipped with processors that are compliant with SSE 
rather than newer AVX extensions, introduced in 2011 [13]. 

2 SSE in IA-32 architecture 

Beginning from the Pentium III processor the Streaming SIMD Extensions 
(SSE) were introduced to the IA-32 architecture. The SSE expands the SIMD 
execution model introduced with the Intel (Multimedia Extension) MMX 
technology by providing a new set of eight 128-bit registers xmm0, 
xmm1 ... xmm7 and the ability to perform (single-instruction, multiple-data) 
SIMD operations on four 32-bit packed single-precision floating-point values 
[13].The same operation can be performed at the same instruction cycle on 
four float elements stored in xmm register or in four array elements kept in 
memory. 

Because of this parallelism in data processing, application of SSE Exten-
sions can yield even fourfold performance gain comparing to a code that is 
non SSE aware. It is worth noting that data level parallelism reduces up to 
four times the number of instructions needed to write the algorithm. 

3 Implementation of one stage of forward DWT computed as a 
convolution 

Figure 2 shows the reference C++ implementation of DWT written accord-
ing to the formula (2). 

 
 // DWT in C++ 
 for (int i=0;i<N;i+=2) 
 { 
  float t1=h1[0]*x[i], t2=g1[0]*x[i]; 
  for (int k=1;k<K;k++) 
  { 
   t1+=h1[k]*x[i+k];  t2+=g1[k]*x[i+k]; 
  } 
  y[i]=t1;  y[i+1]=t2; 
 } 

 
Figure 2. Algorithm of the one stage of forward DWT computed as a con-

volution in C++. 
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Because of such wide and profound applications, there is a lot of research 
on the improvements of Fast Computational Algorithms for the Discrete 
Wavelet Transform [5-10]. The construction of the algorithm is based on pa-
rallel or pyramidal repetition of basic analysis stage for forward transform and 
a basic synthesis stage for inverse transform. The two channel biorthogonal 
filter banks shown on Figure 1. [11] are a classic model of such a transform. 

Blocks H, G, Q and R, are linear filters with finite impulse response H = 
h0,h1,...,hK-1, G = g0,g1,...,gK-1, Q = q0,q1,...,qK-1 i R = r0,r1,...,rK-1, where the 
length of the filter K is an even natural number. Blocks ↓2 and ↑2 denote, 
respectively, the operations of decimation in time of input sequence (down-
sampling) and upsampling by a factor of 2, i.e. inserting zeroes between each 
sample of a input sequence.The results of analysis stage of (forward) DWT 
can be expressed as two convolutions with decimation [12] 
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where hK,k ,gK,k  for k = 0,1,...,K-1 are impulse responses of filters HK, GK, 
and N is the length of input sequence.  

If coefficients of impulse responses of filters HK and GK are written in re-
versed order: 

h1K,k = hK,K-1-k, g1K,k = gK,K-1-k k = 0,1,...,K-1 

formulas (1) can be rewritten in the form (2) that is more convenient for 
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From (2) it is clear that the time needed for computation of DWT ex-
pressed as a convolution, depends on the effectiveness of floating point mul-
tiplications and additions. Exploiting Data Level Parallelism this can be en-
hanced by the usage of Streaming SIMD Extensions (SSE) available on con-
temporary general-purpose processors. 
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The paper describes construction of assembler implementations of DWT 
algorithms (2) that make use of SSE. The algorithms are given for a number 
of filter lengths K = 6,8,10 and 12 and the results are compared with the refer-
ence algorithms written in pure C++. 

The problem solved in the paper is important as the majority of personal 
computers in use, is equipped with processors that are compliant with SSE 
rather than newer AVX extensions, introduced in 2011 [13]. 

2 SSE in IA-32 architecture 

Beginning from the Pentium III processor the Streaming SIMD Extensions 
(SSE) were introduced to the IA-32 architecture. The SSE expands the SIMD 
execution model introduced with the Intel (Multimedia Extension) MMX 
technology by providing a new set of eight 128-bit registers xmm0, 
xmm1 ... xmm7 and the ability to perform (single-instruction, multiple-data) 
SIMD operations on four 32-bit packed single-precision floating-point values 
[13].The same operation can be performed at the same instruction cycle on 
four float elements stored in xmm register or in four array elements kept in 
memory. 

Because of this parallelism in data processing, application of SSE Exten-
sions can yield even fourfold performance gain comparing to a code that is 
non SSE aware. It is worth noting that data level parallelism reduces up to 
four times the number of instructions needed to write the algorithm. 

3 Implementation of one stage of forward DWT computed as a 
convolution 

Figure 2 shows the reference C++ implementation of DWT written accord-
ing to the formula (2). 

 
 // DWT in C++ 
 for (int i=0;i<N;i+=2) 
 { 
  float t1=h1[0]*x[i], t2=g1[0]*x[i]; 
  for (int k=1;k<K;k++) 
  { 
   t1+=h1[k]*x[i+k];  t2+=g1[k]*x[i+k]; 
  } 
  y[i]=t1;  y[i+1]=t2; 
 } 

 
Figure 2. Algorithm of the one stage of forward DWT computed as a con-

volution in C++. 
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The algorithm needs K floating-point multiplications and K-1 floating-
point additions to compute one output element. However because of the data 
level parallelism it is possible to significantly shorten the time of this compu-
tation by the application of SSE extensions.To maximize performance gain, 
the whole algorithm has been programmed in assembly lan-
guage.Furthermore, the inner loop that computes the sum of the product of 
input values times coefficients of impulse response (in reversed order), has 
been unfolded and optimized for the selected filter lengths, to shorten the 
most computation intensive part. The outer loop that contains mainly instruc-
tions for reading samples and writing output coefficients has been left intact. 

Hence, further discussion in this section will concern major parts of the 
two assembler implementations of forward DWT for N being divisible by 4, 
namely: version A, for filers of length K=6 and 8, version B, for K=10 and 12 
as well as some elements of version C, for N being even and K=6. 

3.1 Version A. Implementation of DWT using assembler with SSE 
extensions 

The implementation of this version, for filter length K=8 is shown on Fig-
ure 3. For the sake of clarity and speed of computation it has been assumed 
that the number of input samples N  is divisible by 4. It is not really a con-
straint as, in majority of DWT applications, the length of input sequence is 
power of 2 with the exponent greater than 1. However, this makes it possible 
to compute and keep four output coefficients in xmm register as well as store 
them into the memory on every iteration of the loop. 

In the discussed implementation there are eight steps. The first step shown 
on part a) of Figure 3. loads four input samples x3, x2, x1, x0 into the register 
xmm0 and next four samples  x7, x6, x5, x4 into the register xmm1. It is illu-
strated by the comments to the code, where four parts of the relevant register 
are shown for every instruction. In part b) registers xmm4, xmm5, xmm6 i 
xmm7 are loaded with coefficients of impulse responses h1 and g1 in reversed 
order. 

mov ecx,0   ;(i=0)ecx=0 
movaps xmm0,x[ecx] ; xmm0=x3|x2|x1|x0 
movaps xmm1,x[ecx+16] ; xmm1=x7|x6|x5|x4 
movaps buf1,xmm1 ; buf1=x7|x6|x5|x4 
 

− Loading input data to the xmm registers 
 
movaps xmm4,h1 ; xmm4=h13|h12|h11|h10 
movaps xmm5,h1[16] ; xmm5=h17|h16|h15|h14 
movaps xmm6,g1 ; xmm6=g13|g12|g11|g10 
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movaps xmm7,g1[16] ; xmm7=g17|g16|g15|g14 
 

− Loading parameters h1 and g1 to the xmm registers 
 

iloop: 
movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0 
mulps xmm2,xmm4 ; xmm2=xi+3*h13|xi+2*h12| 

; xi+1*h11|xi+0*h10 
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4 
mulps xmm3,xmm5 ; xmm3=xi+7*h17|xi+6*h16| 

; xi+5*h15|xi+4*h14 
addps xmm2,xmm3 ; xmm2=xi+7*h17+xi+3*h13| 

; xi+6*h16+xi+2*h12| 
;xi+5*h15+xi+1*h11|xi+4*h14+xi+0*h10 

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0 
haddps xmm2,xmm3 ; xmm2=0.0|0.0| 

;xi+7*h17+xi+3*h13+xi+6*h16+xi+2*h12| 
; xi+5*h15+xi+1*h11+xi+4*h14+xi+0*h10 

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0| 
; xi+7*h17+xi+6*h16+xi+5*h15+xi+4*h14+ 
; xi+3*h13+xi+2*h12+xi+1*h11+xi+0*h10 

movaps buf5,xmm2 ; buf5=0.0|0.0|0.0|t1 
 

− Computation of coefficient t1 of DWT (at that moment it is yi+0) 
 

movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0 
mulps xmm2,xmm6 ; xmm2=xi+3*g13|xi+2*g12| 

; xi+1*g11|xi+0*g10 
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4 
mulps xmm3,xmm7 ; xmm3=xi+7*g17|xi+6*g16| 

; xi+5*g15|xi+4*g14 
addps xmm2,xmm3 ; xmm2=xi+7*g17+xi+3*g13| 

; xi+6*g16+xi+2*g12| 
; xi+5*g15+xi+1*g11| 
; xi+4*g14+xi+0*g10 

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0 
haddps xmm2,xmm3 ; xmm2=0.0|0.0| 

; xi+7*g17+xi+3*g13+ 
; xi+6*g16+xi+2*g12| 
; xi+5*g15+xi+1*g11+ 
; xi+4*g14+xi+0*g10 

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0| 
; xi+7*g17+xi+6*g16+ 
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The algorithm needs K floating-point multiplications and K-1 floating-
point additions to compute one output element. However because of the data 
level parallelism it is possible to significantly shorten the time of this compu-
tation by the application of SSE extensions.To maximize performance gain, 
the whole algorithm has been programmed in assembly lan-
guage.Furthermore, the inner loop that computes the sum of the product of 
input values times coefficients of impulse response (in reversed order), has 
been unfolded and optimized for the selected filter lengths, to shorten the 
most computation intensive part. The outer loop that contains mainly instruc-
tions for reading samples and writing output coefficients has been left intact. 

Hence, further discussion in this section will concern major parts of the 
two assembler implementations of forward DWT for N being divisible by 4, 
namely: version A, for filers of length K=6 and 8, version B, for K=10 and 12 
as well as some elements of version C, for N being even and K=6. 

3.1 Version A. Implementation of DWT using assembler with SSE 
extensions 

The implementation of this version, for filter length K=8 is shown on Fig-
ure 3. For the sake of clarity and speed of computation it has been assumed 
that the number of input samples N  is divisible by 4. It is not really a con-
straint as, in majority of DWT applications, the length of input sequence is 
power of 2 with the exponent greater than 1. However, this makes it possible 
to compute and keep four output coefficients in xmm register as well as store 
them into the memory on every iteration of the loop. 

In the discussed implementation there are eight steps. The first step shown 
on part a) of Figure 3. loads four input samples x3, x2, x1, x0 into the register 
xmm0 and next four samples  x7, x6, x5, x4 into the register xmm1. It is illu-
strated by the comments to the code, where four parts of the relevant register 
are shown for every instruction. In part b) registers xmm4, xmm5, xmm6 i 
xmm7 are loaded with coefficients of impulse responses h1 and g1 in reversed 
order. 

mov ecx,0   ;(i=0)ecx=0 
movaps xmm0,x[ecx] ; xmm0=x3|x2|x1|x0 
movaps xmm1,x[ecx+16] ; xmm1=x7|x6|x5|x4 
movaps buf1,xmm1 ; buf1=x7|x6|x5|x4 
 

− Loading input data to the xmm registers 
 
movaps xmm4,h1 ; xmm4=h13|h12|h11|h10 
movaps xmm5,h1[16] ; xmm5=h17|h16|h15|h14 
movaps xmm6,g1 ; xmm6=g13|g12|g11|g10 
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movaps xmm7,g1[16] ; xmm7=g17|g16|g15|g14 
 

− Loading parameters h1 and g1 to the xmm registers 
 

iloop: 
movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0 
mulps xmm2,xmm4 ; xmm2=xi+3*h13|xi+2*h12| 

; xi+1*h11|xi+0*h10 
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4 
mulps xmm3,xmm5 ; xmm3=xi+7*h17|xi+6*h16| 

; xi+5*h15|xi+4*h14 
addps xmm2,xmm3 ; xmm2=xi+7*h17+xi+3*h13| 

; xi+6*h16+xi+2*h12| 
;xi+5*h15+xi+1*h11|xi+4*h14+xi+0*h10 

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0 
haddps xmm2,xmm3 ; xmm2=0.0|0.0| 

;xi+7*h17+xi+3*h13+xi+6*h16+xi+2*h12| 
; xi+5*h15+xi+1*h11+xi+4*h14+xi+0*h10 

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0| 
; xi+7*h17+xi+6*h16+xi+5*h15+xi+4*h14+ 
; xi+3*h13+xi+2*h12+xi+1*h11+xi+0*h10 

movaps buf5,xmm2 ; buf5=0.0|0.0|0.0|t1 
 

− Computation of coefficient t1 of DWT (at that moment it is yi+0) 
 

movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0 
mulps xmm2,xmm6 ; xmm2=xi+3*g13|xi+2*g12| 

; xi+1*g11|xi+0*g10 
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4 
mulps xmm3,xmm7 ; xmm3=xi+7*g17|xi+6*g16| 

; xi+5*g15|xi+4*g14 
addps xmm2,xmm3 ; xmm2=xi+7*g17+xi+3*g13| 

; xi+6*g16+xi+2*g12| 
; xi+5*g15+xi+1*g11| 
; xi+4*g14+xi+0*g10 

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0 
haddps xmm2,xmm3 ; xmm2=0.0|0.0| 

; xi+7*g17+xi+3*g13+ 
; xi+6*g16+xi+2*g12| 
; xi+5*g15+xi+1*g11+ 
; xi+4*g14+xi+0*g10 

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0| 
; xi+7*g17+xi+6*g16+ 
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; xi+5*g15+xi+4*g14+xi+3*g13+ 
; xi+2*g12+xi+1*g11+xi+0*g10 

shufps xmm2,xmm2,11110011b ; xmm2=0.0|0.0|t2|0.0 
addps xmm2,buf5 ; xmm2=0.0|0.0|t2|t1 
movaps buf5,xmm2 ; buf5=0.0|0.0|yi+1|yi+0 

 
− Computation of coefficient t2 of DWT (at that moment it is yi+1) 

 
movaps xmm2,x[ecx+32] ; xmm2=xi+11|xi+10|xi+9|xi+8 
movaps buf0,xmm2 ; buf0=xi+11|xi+10|xi+9|xi+8 
shufps xmm0,xmm1,01001110b ; xmm0=xi+5|xi+4|xi+3|xi+2 
shufps xmm1,xmm2,01001110b ; xmm1=xi+9|xi+8|xi+7|xi+6 

 
− Loading new input data to the xmm registers 

 
movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2 
mulps xmm2,xmm4 ; xmm2=xi+5*h13|xi+4*h12| 

; xi+3*h11|xi+2*h10 
movaps xmm3,xmm1 ; xmm3=xi+9|xi+8|xi+7|xi+6 
mulps xmm3,xmm5 ; xmm3=xi+9*h17|xi+8*h16| 

; xi+7*h15|xi+6*h14 
addps xmm2,xmm3 ; xmm2=xi+9*h17+xi+5*h13| 

; xi+8*h16+xi+4*h12| 
; xi+7*h15+xi+3*h11| 
; xi+6*h14+xi+2*h10 

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0 
haddps xmm2,xmm3 ; xmm2=0.0|0.0| 

; xi+9*h17+xi+5*h13+ 
; xi+8*h16+xi+4*h12| 
; xi+7*h15+xi+3*h11+ 
; xi+6*h14+xi+2*h10 

haddps xmm3,xmm2 ; xmm3=0.0| 
; xi+9*h17+xi+8*h16+ 
; xi+7*h15+xi+6*h14+ 
; xi+5*h13+xi+4*h12+ 
; xi+3*h11+xi+2*h10| 
; 0.0|0.0 

movaps buf6,xmm3 ; buf6=0.0|t1|0.0|0.0 
 

− Computation of coefficient t1 of DWT (at that moment it is yi+2) 
 

movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2 
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mulps xmm2,xmm6 ; xmm2=xi+5*g13|xi+4*g12|xi+3*g11| 
; xi+2*g10 

movaps xmm3,xmm1 ; xmm3=xi+9|xi+8|xi+7|xi+6 
mulps xmm3,xmm7 ; xmm3=xi+9*g17|xi+8*g16|xi+7*g15| 

; xi+6*g14 
addps xmm2,xmm3 ; xmm2=xi+9*g17+xi+5*g13| 

; xi+8*g16+xi+4*g12| 
; xi+7*g15+xi+3*g11| 
; xi+6*g14+xi+2*g10 

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0 
haddps xmm2,xmm3 ; xmm2=0.0|0.0| 

; xi+9*g17+xi+5*g13+ 
; xi+8*g16+xi+4*g12| 
; xi+7*g15+xi+3*g11+ 
; xi+6*g14+xi+2*g10 

haddps xmm3,xmm2 ; xmm3=0.0|xi+9*g17+xi+8*g16+ 
; xi+7*g15+xi+6*g14+ 
; xi+5*g13+xi+4*g12+ 
; xi+3*g11+xi+2*g10|0.0|0.0 

shufps xmm3,xmm3,10000000b ; xmm3=t2|0.0|0.0|0.0 
addps xmm3,buf6 ; xmm3=t2|t1|0.0|0.0 
addps xmm3,buf5 ; xmm3=yi+3|yi+2|yi+1|yi+0 
movapsy[ecx],xmm3 ; y[ecx]=yi+3|yi+2|yi+1|yi+0 

 
− Computation of coefficient t2 of DWT (at that moment it is yi+3), 

assembling yi+3, yi+2, yi+1, yi+0, in xmm register and storing its content 
into the memory 
 

add ecx,16   ;(i=i+4) i.e. ecx=ecx+16 
movaps xmm0,buf1 ; xmm0=xi+7|xi+6|xi+5|xi+4 
movaps xmm1,buf0 ; xmm1=xi+11|xi+10|xi+9|xi+8 
movaps buf1,xmm1 ; buf1=xi+11|xi+10|xi+9|xi+8 
cmpecx,NN ; Test the end of loop  

; condition(ecx = NN),  
;where NN=(N/4)*16 

jneiloop ; Jump to the label iloop 
; mentioned in step c)   
; if  ecx ≠ NN 

− updating xmm0 i xmm1 before the next iteration of the loop and exit from 
the loop.  
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; xi+5*g15+xi+4*g14+xi+3*g13+ 
; xi+2*g12+xi+1*g11+xi+0*g10 

shufps xmm2,xmm2,11110011b ; xmm2=0.0|0.0|t2|0.0 
addps xmm2,buf5 ; xmm2=0.0|0.0|t2|t1 
movaps buf5,xmm2 ; buf5=0.0|0.0|yi+1|yi+0 

 
− Computation of coefficient t2 of DWT (at that moment it is yi+1) 

 
movaps xmm2,x[ecx+32] ; xmm2=xi+11|xi+10|xi+9|xi+8 
movaps buf0,xmm2 ; buf0=xi+11|xi+10|xi+9|xi+8 
shufps xmm0,xmm1,01001110b ; xmm0=xi+5|xi+4|xi+3|xi+2 
shufps xmm1,xmm2,01001110b ; xmm1=xi+9|xi+8|xi+7|xi+6 

 
− Loading new input data to the xmm registers 

 
movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2 
mulps xmm2,xmm4 ; xmm2=xi+5*h13|xi+4*h12| 

; xi+3*h11|xi+2*h10 
movaps xmm3,xmm1 ; xmm3=xi+9|xi+8|xi+7|xi+6 
mulps xmm3,xmm5 ; xmm3=xi+9*h17|xi+8*h16| 

; xi+7*h15|xi+6*h14 
addps xmm2,xmm3 ; xmm2=xi+9*h17+xi+5*h13| 

; xi+8*h16+xi+4*h12| 
; xi+7*h15+xi+3*h11| 
; xi+6*h14+xi+2*h10 
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; xi+9*h17+xi+5*h13+ 
; xi+8*h16+xi+4*h12| 
; xi+7*h15+xi+3*h11+ 
; xi+6*h14+xi+2*h10 
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; xi+9*h17+xi+8*h16+ 
; xi+7*h15+xi+6*h14+ 
; xi+5*h13+xi+4*h12+ 
; xi+3*h11+xi+2*h10| 
; 0.0|0.0 
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− Computation of coefficient t1 of DWT (at that moment it is yi+2) 
 

movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2 
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mulps xmm2,xmm6 ; xmm2=xi+5*g13|xi+4*g12|xi+3*g11| 
; xi+2*g10 
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mulps xmm3,xmm7 ; xmm3=xi+9*g17|xi+8*g16|xi+7*g15| 

; xi+6*g14 
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; xi+8*g16+xi+4*g12| 
; xi+7*g15+xi+3*g11| 
; xi+6*g14+xi+2*g10 
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haddps xmm2,xmm3 ; xmm2=0.0|0.0| 
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; xi+8*g16+xi+4*g12| 
; xi+7*g15+xi+3*g11+ 
; xi+6*g14+xi+2*g10 

haddps xmm3,xmm2 ; xmm3=0.0|xi+9*g17+xi+8*g16+ 
; xi+7*g15+xi+6*g14+ 
; xi+5*g13+xi+4*g12+ 
; xi+3*g11+xi+2*g10|0.0|0.0 

shufps xmm3,xmm3,10000000b ; xmm3=t2|0.0|0.0|0.0 
addps xmm3,buf6 ; xmm3=t2|t1|0.0|0.0 
addps xmm3,buf5 ; xmm3=yi+3|yi+2|yi+1|yi+0 
movapsy[ecx],xmm3 ; y[ecx]=yi+3|yi+2|yi+1|yi+0 

 
− Computation of coefficient t2 of DWT (at that moment it is yi+3), 

assembling yi+3, yi+2, yi+1, yi+0, in xmm register and storing its content 
into the memory 
 

add ecx,16   ;(i=i+4) i.e. ecx=ecx+16 
movaps xmm0,buf1 ; xmm0=xi+7|xi+6|xi+5|xi+4 
movaps xmm1,buf0 ; xmm1=xi+11|xi+10|xi+9|xi+8 
movaps buf1,xmm1 ; buf1=xi+11|xi+10|xi+9|xi+8 
cmpecx,NN ; Test the end of loop  

; condition(ecx = NN),  
;where NN=(N/4)*16 

jneiloop ; Jump to the label iloop 
; mentioned in step c)   
; if  ecx ≠ NN 

− updating xmm0 i xmm1 before the next iteration of the loop and exit from 
the loop.  
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Figure 3. Steps of computation of the coefficients yi+3, yi+2, yi+1, yi+0 for i = 
0,4,8,...,N-4 in Version A of the implementation of DWT using assembler 
with SSE extensions 

After the initialization steps a) - b) the algorithm enters the loop shown in 
steps c) - h). The step c) shows how the output coefficient yi+0  is being com-
puted and put into the least significant part of the xmm register. Two SSE 
multiplications and three SSE additions are performed in this phase that is 
equivalent to eight floating point multiplications and seven additions. The 
results are saved to appropriate parts of the xmm register. 

The next phase of the loop, namely step d) is devoted to computation of 
output coefficient yi+1 and  saving it in the subsequent, more significant part of 
the xmm register. After this step, the register contains coefficients yi+1, yi+0in 
its lower part and floating zeros in the upper part. 

This step is almost identical to the preceding one, with the exception of re-
placing impulse response h1with g1. 

In step e) registers xmm0 and xmm1 are loaded with input samples shifted 
by two positions, in relation to their previous content. Namely,xmm0 contains 
samples x5, x4 ,x3 ,x2, and xmm1samples x9, x8, x7, x6. These data will be used to 
compute yi+3, yi+2. 

Step f) show the details of computation of  coefficient yi+2 and points out 
that its value is stored in the xmm register, next to already computed yi+1, yi+0. 
Again, this phase is very similar to step c), the only difference is the position 
in xmm register where the value of yi+2 is being saved. 

Similarly, the step g) concerns computation of the forth coefficient yi+3. It 
is stored in the most significant part of the register xmm. The final quadruplet 
yi+3, yi+2, yi+1, yi+0 is saved from the xmm register into the memory. 

The last phase of loop shown as step h) increments loop counter in ecx reg-
ister by 16 (i.e. the size of xmm register in bytes) This value will be used to 
address input samples x and output coefficients y. 

In the following lines of code, registers xmm0 and xmm1 are being pre-
pared for computation of output coefficients yi+3, yi+2, yi+1, yi+0 in the next 
iteration of the loop (with i incremented by 4). 

The loop concludes with a test condition ecx ≠ NN, where NN=(N/4)*16. 
If this condition is met the code jumps to the label iloop discussed in 

step c), i.e. the beginning of the loop. 
The code for case K=8 can be also used for K=6, provided the two most 

significant coefficients of reversed order impulse responses are set to zero, i.e. 
h17=h16=g17=g16=0. However, coefficients h15… h10 and  g15… g10 need to 
be initialized with corrected values, appropriate for K=6. 
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3.2 Version B. Implementation of DWT using assembler with SSE 
extensions 

The implementation for filter length K=12 is similar to Version A. Again it 
has been assumed that the number of input samples N  is divisible by 4, which 
makes it possible to process, in one iteration of the loop, four output coeffi-
cient in the register xmm. 

The implementation can be logically divided into 8 steps. At first, the reg-
isters xmm0 are loaded with values x3, x2, x1, x0, xmm1 with x7, x6, x5, x4 and 
xmm2 with x11, x10, x9, x8. The reversed coefficients of impulse responses h17, 
h16, h15, h14and h13, h12, h11, h10 are sent to xmm5 and xmm4, while g17, g16, 
g15, g14and g13, g12, g11, g10 are sent to xmm7 and xmm6. However, because 
of the limited number of xmm registers the most significant parts of h111, h110, 
h19, h18 and g111, g110, g19, g18 will be fetched from memory. 

Following the above initialization code there are six steps in the loop, as 
they were in version A.The first step shows how the output coefficient yi+0  is 
being computed and put into the least significant part of the xmm register. 
Three SSE multiplications and four SSE additions are performed in this phase 
which is equivalent to twelve floating point multiplications and eleven addi-
tions. The results are saved to appropriate parts of the xmm register. 

The next phase of the loop is devoted to computation of output coefficient 
yi+1 and  saving it into the subsequent, more significant part of the xmm regis-
ter. After this step, the register contains coefficients yi+1, yi+0in its lower part 
and floating zeros in the upper part. Thatphase of the algorithm is almost iden-
tical to the preceding one, with the exception of replacing impulse response 
h1with g1.  

In the next step registers xmm0, xmm1 and xmm2 are loaded with input 
samples shifted by two positions, in relation to their previous content. Name-
ly,xmm0 contains samples x5, x4 ,x3 ,x2,, xmm1samples x9, x8, x7, x6, andxmm2 
samples x13, x12, x11, x10.  These data will be used to compute yi+3, yi+2. 

In the subsequent step, coefficient yi+2 is being computed and stored in the 
xmm register, next to the already computed yi+1, yi+0. Again, this phase is very 
similar to the computation of yi+0, the only difference is the position in xmm 
register where the value of yi+2 is being saved. 

Similarly, the following step, concerns computation of the last coefficient 
yi+3. It is stored in the most significant part of the register xmm. The final qua-
druplet yi+3, yi+2, yi+1, yi+0 is transferred from the xmm register into the memo-
ry. 

The last phase of loop increments loop counter in ecx register by 16 (i.e. 
the size of xmm register in bytes). This value will be used to address input 
samples x and output coefficients y. 

In the following lines of code, registers xmm are being prepared for com-
putation of output coefficients yi+3, yi+2, yi+1, yi+0 in the next iteration of the 
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loop (with i incremented by 4). The loop concludes with a test condition ecx ≠ 
NN, where NN=(N/4)*16.If this condition is met the code jumps to the label 
iloop, i.e. computation of yi+0.  

The code that computes DWT for K=12 can be also used for K=10, pro-
vided the most significant coefficients of reversed impulse responses are set to 
zero, i.e. h111,=h110,=g111,=g110=0. However, coefficients h19… h10 and  
g19… g10 need to be initialized with corrected values, appropriate for K=10. 

3.3 Version C. Implementation of DWT using assembler with SSE 
extensions 

This version of DWT implementation assumes that K=6, but the number of 
input samples Nis even. In that case, on every odd iteration of the loop, the 
computations are performed in the same way as in version A (see Figure 3. 
Step c), and the pair of output coefficients yi+1, yi+0 is saved on the least signif-
icant positions od 128-bit long buffer buf. On every even iteration, a following 
pair of output coefficients is being computed and saved in memory, together 
with a preceding pair, as a quadruplet of properly ordered coefficients. 

If N is not divisible by 4, the last save operation concerns only the last pair 
of yi+1, yi+0.The code for computation of output coefficients is identical in 
versions A and C of the algorithm, so is the time of computation for K=6. 

4 Test environment 

All DWT implementations presented in the paper were written as C++ in-
line assembly (with SSE extensions) and compiled with Microsoft Visual C++ 
2010 Express Version 10.0.40219.1 SP1Rel. The compiled code was executed 
on MS Windows 7 Home Premium PC with Intel® Core™ i5 CPU 650 
3.20GHz and 4GB of RAM on board. Further, to neglect impact of concurrent 
operations of the processor on the computation time, all tests were run pN 
times, and the minimum time of execution, obtained with 64-bit clock cycle 
counter (measuring the number of clock cycles of the very code responsible 
for the computation of DWT), has been taken as a actual result of the mea-
surement. 

5 Experimental results 

In order to compare effectiveness of the proposed implementation of DWT 
using assembler with SSE extensions, it was compared against the reference 
program written in pure C++, for the selected lengths of filter K, and a few 
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lengths of a input sequence N being divisible by 4. The resulting measure-
ments expressed in cycles are gathered in Table 1. 

Table 1. Results of measurement for pN = 100 000 000 

K Implementation N=64 N=256 N=1024 N=4096 
 
6 

C++ 3 465 13 983 55 902 223 611 
Assembler with SSE 
(version A) 

459 1 845 7 395 29 490 

 
8 

C++ 4 479 18 246 72 927 291 693 
Assembler with SSE 
(version A) 

459 1 845 7 389 29 862 

 
10 

C++ 5 577 22 374 89 193 357 006 
Assembler with SSE 
(version B) 

594 2 403 9 621 38 880 

 
12 

C++ 6 579 26 628 106 965 425 748 
Assembler with SSE 
(version B) 

597 2 424 9 657 38 616 

 
As can be seen from the table above, for filters of length K=8 and all tested 

values of N, implementation of DWT in assembler, with SSE extensions is 
performed almost 10 times faster than pure C++ version. For K=12 the opti-
mized code is almost 11 times faster. This speedup may be attributed to ma-
nually optimized assembler implementation with parallel processing of data 
using SSE extensions. As it was mentioned in the information about SSE in 
IA-32 architecture, this may shorten the time of computation up to four times. 

Further reduction of execution time, results from unfolding the inner loop 
which is the most computationally intensive. The outer loop contains mainly 
instructions for reading samples x and writing output coefficients y. 

Because the implementation for K=6 and 8 uses the same version (A) of 
the algorithm, execution time is almost identical in both cases. The same 
holds true for version B and K=10 and 12. 

Regardless of the version of implementation and the value of K, the 
amount of time needed to compute DWT is proportional to the length of the 
input sequence (and number of iterations). It is a direct conclusion from the 
formula (2). 

Eventually the version C, for even N, has been examined. The results are 
shown in Table 2. 
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Further reduction of execution time, results from unfolding the inner loop 
which is the most computationally intensive. The outer loop contains mainly 
instructions for reading samples x and writing output coefficients y. 

Because the implementation for K=6 and 8 uses the same version (A) of 
the algorithm, execution time is almost identical in both cases. The same 
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Implementation Of The Wavelet ... 

134 

Table 2. Results of measurement for pN = 100 000 000 

Implementation N=64 N=256 N=1024 N=4096 
Assembler with SSE (version C) 465 1839 7389 29436 

 
The execution times for version C are virtually identical to version A. As a 

matter of fact, it is an expected result as both implementations share the same 
code to compute output pairs of coefficients. Moreover, although the con-
struction and analysis of version C is more complex than version A, the speed 
of version C remains the same. Therefore, it is sufficient to use version A for 
K=6 and 8, and version B for K=10 and 12 and exclude special implementa-
tions for N, that are even but not divisible by four. 

6 Conclusions 

The paper discusses a number of implementations of Discrete Wavelet 
Transform written as a formula (2). The experimental results show that ma-
nually optimized C++, with unfolded inner loop and inline assembly code 
with SSE extensions, is about 10 times more robust than reference program 
written in pure C++. What is more, the obtained speedup looks favorably, 
comparing to the results shown in [14] where the SSE enabled code was per-
formed 6x faster than naïve, C++  implementation of the convolution algo-
rithm.   

Although it is possible to achieve even further speedup with the applica-
tion of the thread level parallelism of contemporary multi-core processors, the 
necessary algorithms are considerably more complicated. Hence, the proposed 
solution that use only Data Level Parallelism with SSE extensions is an attrac-
tive alternative, available even on a simple one core processors. 

Due to the lower complexity of versions A and B, they are recommended 
as effective templates for computation of DWT with application of SSE.  
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Table 2. Results of measurement for pN = 100 000 000 
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Abstract 
Immutability and the functional programming style demand an extensible and 
generic approach in the domain of semantic and structural equivalence testing. 
The lack of a library or a framework offering such functionality for Clojure 
programming language led to some design and implementation efforts that this 
article undertakes to describe. Incidentally it tries to gather and present a 
collection of most severe mistakes that may be made by a programmer that 
attempts to test objects of various kinds for their equivalence, both in Clojure 
and the underlying Java run-time with it's standard library, showing simple yet 
usable ways to avoid them. 

Key words: Equivalence testing, semantics, identity, functional programming, 
Clojure 

1 Introduction 

Growing multitasking programming needs and the popularity of functional 
programming style brought the notions of immutability and state to the fore-
front of elements a software engineer must think of when designing and im-
plementing modern software systems. Immutable objects that are commonly 
associated with mathematical models of the real world make the structural 
equality a default choice, in the opposition to the explicitly expressed equali-
ty, based on an explicit identifier, physical memory location etc., that must be 
used under an assumption of the always present change. Additionally and in a 
resulting way, duck typing (see e. g. [1]) is a programming means of abstrac-
tion of a growing importance at least in some kinds of systems. This goes in 
an analogous ways in an opposition to the tag-based typing. Unfortunately, 
the state of the art in programming languages, even the most advanced ones is 
not an optimal one when talking about the objects' identity and structural 
equivalence. The paper gives an overview of these problems and tries to 
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present a generalized solution based on some solid abstractions. Then the 
important implementation details of an identity framework for Clojure is pre-
sented. 

2 Reference Types Equivalence Problems 

If we assume a concentration on the structural equivalence issues, then the 
lack of a generalized and extensible solution to the problem of both in Java 
and Clojure is apparent. These two languages are mentioned here for the fol-
lowing four reasons: 
1. Java is a typical, strongly and statically typed programming language [2], 

very representative for a class of languages used widely nowadays and 
known as the object-oriented ones. The default identity is the memory lo-
cation-based one. 

2. There are multiple reasons why implementing a non-default identity crite-
ria by overriding the java.lang.Object equals and hashCode methods is 
hard and error-prone [3, 4]. Taking a detailed look at these mechanisms 
and problems laying there is beyond the scope of this article, but will be 
presented elsewhere in the future works. 

3. Clojure is a modern functional language [5, 6], supporting immutability 
and using Software Transactional Memory where the explicit state must 
be used to achieve a desired functionality. Clojure is strongly typed but in 
an opposition to Java it lacks static type-checking and uses duck-typing 
where possible. 

4. The two languages both run on top of the JVM, Clojure shares Java libra-
ries and is capable to run an arbitrary Java code, on the other hand embed-
ding Clojure run-time in a Java application is an easy task. One can say 
these languages are related worlds despite the fundamental stylish and typ-
ing differences between them. 

 
Clojure standard library as well as some run-time elements support struc-

tural equivalence with respect to collections, in particular. Sequences (vectors, 
lists), sets and associative collections (maps, records) all exhibit support for 
deep, structural comparison. Unfortunately, this support is not extensible. Yes, 
a presence of some interfaces suggests that the mechanisms are capable of 
being extended, but: 
- There are some implementation details that effectively block extending 

the run-time abstractions with custom classes, written either in Clojure 
(records, types) or Java (classes). An example of this is introducing a new 
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composite numeric type, like a Complex number1. The new non-atomic 
numeric type does not fit into Clojure equivalence mechanisms for num-
bers and there is no way to solve this problem without making significant 
changes to the core of the language. 

- The situation gets disclosed when trying to integrate an existing any 
computational library into the Clojure based system. 

- Even if there were no barriers described above, using the default inter-
face-based abstractions is impossible on already written types (Java 
classes in particular). Using AOP as described by Kiczales [7] is not an 
elegant nor easily accessible solution here. 

 
All these problems are easily solvable with use of Clojure protocols [6], 

but currently there are no libraries of this kind. This is a very important pre-
mise that influenced creating a universal solution described in this article.  

3 Equivalence of Numeric Values – Quirks and Corner Cases 

Problems described in the previous section expand onto the primitive 
types, their values as well as their boxed counterparts. To focus our considera-
tions, the general contract for equality and hashing must be provided to the 
reader. Java Language Specification [2] as well as some other resources [8] 
say that equals method implements an equivalence relation. It is: 
- Reflexive: For any non-null reference value x, x.equals(x) must return true. 
- Symmetric: For any non-null reference values x and y, x.equals(y) must 

return true if and only if y.equals(x) returns true. 
- Transitive: For any non-null reference values x, y, z, if x.equals(y) returns 

true and y.equals(z) returns true, then x.equals(z) must return true. 
- Consistent: For any non-null reference values x and y, multiple invocations 

of x.equals(y) consistently return true or consistently return false, provided 
no information used in equals comparisons on the objects is modified. 

- For any non-null reference value x, x.equals(null) must return false. 
 

For the hashCode method, the following set of constraints applies: 
- Whenever it is invoked on the same object more than once during an ex-

ecution of an application, the hashCode method must consistently return 
the same integer, provided no information used in equals comparisons on 
the object is modified. This integer need not remain consistent from one 
execution of an application to another execution of the same application. 

                                                      
1 Complex numbers are not present in Clojure by default. ANSI Common Lisp ([9]) supports 

them. 
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- If two objects are equal according to the equals(Object) method, then call-
ing the hashCode method on each of the two objects must produce the 
same integer result. 

- It is not required that if two objects are unequal according to the 
equals(Object) method, then calling the hashCode method on each of the 
two objects must produce distinct integer results. However, the program-
mer should be aware that producing distinct integer results for unequal ob-
jects may improve the performance of hash tables. 

 
Neither the Java primitives2 nor the derivatives of java.lang.Number pos-

sess the semantically correct implementations of equivalence mechanisms as a 
whole. Saying “semantically correct” we mean a correct behavior of the prop-
er methods and operators with respect to Liskov substitution principle [10]. 
Moreover, using some values of these types lead to surprising results, espe-
cially the floating-point values representation in Java3 causes real headaches 
when attempting to implement solid numeric codes. 

The rest of this section is an attempt to present a catalog of semantically 
incorrect behaviors of numeric values. All examples are given in Clojure, and 
so we focus on boxed types rather than the primitive ones. We also use clo-
jure.core/= and clojure.core/hash-code operators instead of calling equals 
and hashCode explicitly4. 

There are the most important examples of malfunctioning equivalence in 
Clojure and Java: 
- Erroneous floats equivalence, both in primitive type values and in the 

boxed ones. Example: 
 

> (= (float 1.234) 1.234) 
false 
 
> (hash 1.234) 
-146307282 
 
> (hash (float 1.234)) 
1067316150 
 

This turns out to be eventually a conversion problem between floats and 
doubles, because when applying clojure.core/= operator the Clojure run-time 

                                                      
2 In the case of primitives we mean the == operator in Java, not the equals/hashCode com-

plementary set of methods that apply only for reference types. 
3 And all languages with standard IEEE 754 ([11]) floating-point representation. 
4 The reader familiar with Clojure should be aware that these operators semantically wrap 

equals and hashCode. 
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All the following source code examples assume the following Clojure 
name-space context: 
 
(ns kongra.behavior 
  (:refer-clojure :exclude [rand]) 
   
  (:use     [kongra.core]) 
  (:require [clojure.set                :as CSET] 
            [clojure.math.combinatorics :as CMCOMB] 
 
            [kongra.behavior            :as B] 
            [kongra.identity            :as ID] 
            [kongra.fressian            :as FRESS])) 
 

The operator cat concatenates given arguments collections. It's internal 
workings are based on using the standard clojure.core/apply procedure: 

 
(defn cat 
  [& colls] 
  (->> colls 
       (apply concat) 

       (with-correctness1 (apply correctness1 colls)))) 
 

In a Clojure REPL one could execute the following and observe the re-
sults2 of using cat: 
 
> (cat [1 2 3 4] [[:a :b] [:c :d]]) 
(1 2 3 4 [:a :b] [:c :d]) 
 

When generating arguments by matching together single values from the 
passed sequences of values one can zip the sequences together: 
 
(defn zip 
  [& colls] 
  (->> colls 
       (apply map vector) 
       (with-correctness (apply correctness colls)))) 
 
and the following occurs: 
> (zip [1 2 3 4] [[:a :b] [:c :d]]) 
([1 [:a :b]]  
 [2 [:c :d]]) 

                                                      
1 For arguments' and arguments collections' correctness, please go to section 5 of this paper. 
2 All procedures described in this section produce lazily evaluated results. 
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As you can see, the related (with respect to the same position) components 
of passed streams are combined to form new arguments and later placed in a 
resulting stream. The zip operator has it's variadic version called vzip: 
 
(defn vzip 
  [& colls] 
  (->> colls 
       (apply map #(concat (butlast %&) (last %&))) 
       (with-correctness (apply correctness colls)))) 
 
that produces a slightly different result when applied to the same set of data: 
 
> (vzip [1 2 3 4] [[:a :b] [:c :d]]) 
((1 :a :b)  
 (2 :c :d)) 
 

The vzip operator may be especially useful when creating streams of ar-
guments to test procedures with variadic arities. 

To combine every element of all arguments collections with one another 
one must use the Cartesian product prod: 
 
(defn prod 
  [& colls] 
  (->> colls 
       (apply CMCOMB/cartesian-product) 
       (with-correctness (apply correctness colls)))) 
 
or it's “variadic” counterpart – vprod: 
 
(defn vprod 
  [& colls] 
  (->> colls 
       (apply B/prod) 
       (map #(concat (butlast %) (last %))) 
       (with-correctness (apply correctness colls)))) 
 

The two operators give results as follows: 
> (prod [1 2 3 4] [[:a :b] [:c :d]]) 
((1 [:a :b])  
 (1 [:c :d])  
 (2 [:a :b])  
 (2 [:c :d])  
 (3 [:a :b])  
 (3 [:c :d])  
 (4 [:a :b])  
 (4 [:c :d])) 
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> (vprod [1 2 3 4] [[:a :b] [:c :d]]) 
((1 :a :b)  
 (1 :c :d)  
 (2 :a :b)  
 (2 :c :d)  
 (3 :a :b)  
 (3 :c :d)  
 (4 :a :b)  
 (4 :c :d)) 
 

These are the key arguments collections (streams) manipulating argu-
ments. Among the arguments generators the most important ones are those 
which generate a stream of variable arity arguments sets:  
 
(defn vargs 
  [coll] 
  (->> coll count inc range 
       (map #(take % coll)) 
       (with-correctness (correctness coll)))) 
 
> (vargs [1 2 3 4]) 
(()  
 (1)  
 (1 2)  
 (1 2 3)  
 (1 2 3 4)) 
 

The vargs operator takes an example arguments vector and generates an 
arguments collection (stream, coll of arguments) with variable arguments 
vector size, as presented above. Similarly, vmaps: 
 
(defn vmaps 
  [keyvals] 
  (assert (even? (count keyvals))) 
  (->> keyvals 
       (partition 2) ;; all possible entries 
       powerset      ;; all possible subsets 
       (map #(apply hash-map (apply concat %))) 
       (with-correctness (correctness keyvals)))) 
 
produces a stream of maps (associative collections) with all possible “arities” 
of map entries:  
> (vmaps [:a 1 :b 2]) 
({}  
 {:a 1}  
 {:b 2}  
 {:a 1, :b 2}) 
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(defn prod 
  [& colls] 
  (->> colls 
       (apply CMCOMB/cartesian-product) 
       (with-correctness (apply correctness colls)))) 
 
or it's “variadic” counterpart – vprod: 
 
(defn vprod 
  [& colls] 
  (->> colls 
       (apply B/prod) 
       (map #(concat (butlast %) (last %))) 
       (with-correctness (apply correctness colls)))) 
 

The two operators give results as follows: 
> (prod [1 2 3 4] [[:a :b] [:c :d]]) 
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 (2 [:c :d])  
 (3 [:a :b])  
 (3 [:c :d])  
 (4 [:a :b])  
 (4 [:c :d])) 
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> (vprod [1 2 3 4] [[:a :b] [:c :d]]) 
((1 :a :b)  
 (1 :c :d)  
 (2 :a :b)  
 (2 :c :d)  
 (3 :a :b)  
 (3 :c :d)  
 (4 :a :b)  
 (4 :c :d)) 
 

These are the key arguments collections (streams) manipulating argu-
ments. Among the arguments generators the most important ones are those 
which generate a stream of variable arity arguments sets:  
 
(defn vargs 
  [coll] 
  (->> coll count inc range 
       (map #(take % coll)) 
       (with-correctness (correctness coll)))) 
 
> (vargs [1 2 3 4]) 
(()  
 (1)  
 (1 2)  
 (1 2 3)  
 (1 2 3 4)) 
 

The vargs operator takes an example arguments vector and generates an 
arguments collection (stream, coll of arguments) with variable arguments 
vector size, as presented above. Similarly, vmaps: 
 
(defn vmaps 
  [keyvals] 
  (assert (even? (count keyvals))) 
  (->> keyvals 
       (partition 2) ;; all possible entries 
       powerset      ;; all possible subsets 
       (map #(apply hash-map (apply concat %))) 
       (with-correctness (correctness keyvals)))) 
 
produces a stream of maps (associative collections) with all possible “arities” 
of map entries:  
> (vmaps [:a 1 :b 2]) 
({}  
 {:a 1}  
 {:b 2}  
 {:a 1, :b 2}) 
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To produce a testing collection for the procedures with formal parameters 
of type 4 – the variable arity arglists with maps playing the role of keyword 
arguments carriage, a simple mapargs may be used: 
 
(defn mapargs 
  [m] 
  (->> m 
       (apply concat) 
       (with-correctness (correctness m)))) 
 
> (mapargs {:a 1 :b 2}) 
(:a 1 :b 2) 
 
together with a vmapargs operator: 
 
(defn vmapargs 
  [keyvals] 
  (assert (even? (count keyvals))) 
  (->> keyvals 
       (partition 2) ;; all possible entries 
       powerset      ;; all possible subsets 
       (map #(apply concat %)) 
       (with-correctness (correctness keyvals)))) 
 
> (vmapargs [:a 1 :b 2]) 
(()  
 (:a 1)  
 (:b 2)  
 (:a 1 :b 2)) 
 

that works almost like vmaps, but converts any generated map into a flat-
tened sequence of key-value pairs (map entries). 

Finally the two following operators: powargs and permargs use power-sets 
and permutations to generate proper arguments collections: 
 
(defn powargs 
  [coll] 
  (->> coll 
       powerset 
       (with-correctness (correctness coll)))) 
 
> (powargs [1 2 3]) 
(() (1) (2) (1 2) (3) (1 3) (2 3) (1 2 3)) 
 
(defn permargs 
  [coll] 
  (->> coll 
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       CMCOMB/permutations 
       (with-correctness (correctness coll)))) 
 
> (permargs [1 2 3]) 
([1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1]) 

5  The Correctness Abstraction 

The correctness is an enumerated type with an integral code field: 
(deftype ^:private Correctness 
  [name code] 
 
  java.lang.Object 
  (toString [this] name)) 
 

Besides the correctness levels mentioned earlier there is also a COR-
RECTNESS-UNDEFINED. The enumeration values go as follows: 

 
(def CORRECTNESS-UNDEFINED  
     (Correctness. "CORRECTNESS-UNDEFINED" (byte 0))) 
(def NON-BORDER             
     (Correctness. "NON-BORDER"            (byte 1))) 
(def BORDER                 
     (Correctness. "BORDER"                (byte 2))) 
(def PARTIALLY-CORRECT      
     (Correctness. "PARTIALLY-CORRECT"     (byte 3))) 
(def INCORRECT              
     (Correctness. "INCORRECT"             (byte 4))) 
 
and the correctness of a collection of objects is the maximum correctness of 
the elements of the collection: 
 
(defn- max-correctness 
  ([c] c) 
  ([c d] 
     (if (> (.longValue ^Number (.code ^Correctness c)) 
            (.longValue ^Number (.code ^Correctness d))) 
       c d)) 
 
  ([c d & more] 
     (reduce max-correctness  
             (max-correctness c d)             
             more))) 
 



Automated Procedure Behavior  ... 

172 

To produce a testing collection for the procedures with formal parameters 
of type 4 – the variable arity arglists with maps playing the role of keyword 
arguments carriage, a simple mapargs may be used: 
 
(defn mapargs 
  [m] 
  (->> m 
       (apply concat) 
       (with-correctness (correctness m)))) 
 
> (mapargs {:a 1 :b 2}) 
(:a 1 :b 2) 
 
together with a vmapargs operator: 
 
(defn vmapargs 
  [keyvals] 
  (assert (even? (count keyvals))) 
  (->> keyvals 
       (partition 2) ;; all possible entries 
       powerset      ;; all possible subsets 
       (map #(apply concat %)) 
       (with-correctness (correctness keyvals)))) 
 
> (vmapargs [:a 1 :b 2]) 
(()  
 (:a 1)  
 (:b 2)  
 (:a 1 :b 2)) 
 

that works almost like vmaps, but converts any generated map into a flat-
tened sequence of key-value pairs (map entries). 

Finally the two following operators: powargs and permargs use power-sets 
and permutations to generate proper arguments collections: 
 
(defn powargs 
  [coll] 
  (->> coll 
       powerset 
       (with-correctness (correctness coll)))) 
 
> (powargs [1 2 3]) 
(() (1) (2) (1 2) (3) (1 3) (2 3) (1 2 3)) 
 
(defn permargs 
  [coll] 
  (->> coll 

Grzanek K. 

173 

       CMCOMB/permutations 
       (with-correctness (correctness coll)))) 
 
> (permargs [1 2 3]) 
([1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1]) 

5  The Correctness Abstraction 

The correctness is an enumerated type with an integral code field: 
(deftype ^:private Correctness 
  [name code] 
 
  java.lang.Object 
  (toString [this] name)) 
 

Besides the correctness levels mentioned earlier there is also a COR-
RECTNESS-UNDEFINED. The enumeration values go as follows: 

 
(def CORRECTNESS-UNDEFINED  
     (Correctness. "CORRECTNESS-UNDEFINED" (byte 0))) 
(def NON-BORDER             
     (Correctness. "NON-BORDER"            (byte 1))) 
(def BORDER                 
     (Correctness. "BORDER"                (byte 2))) 
(def PARTIALLY-CORRECT      
     (Correctness. "PARTIALLY-CORRECT"     (byte 3))) 
(def INCORRECT              
     (Correctness. "INCORRECT"             (byte 4))) 
 
and the correctness of a collection of objects is the maximum correctness of 
the elements of the collection: 
 
(defn- max-correctness 
  ([c] c) 
  ([c d] 
     (if (> (.longValue ^Number (.code ^Correctness c)) 
            (.longValue ^Number (.code ^Correctness d))) 
       c d)) 
 
  ([c d & more] 
     (reduce max-correctness  
             (max-correctness c d)             
             more))) 
 



Automated Procedure Behavior  ... 

174 

Correctness of an object may be specified explicitly by setting a proper as-
sociation in it's meta-data or implicitly, by using an indicator function imple-
mented as a Clojure protocol method: 

 
(defprotocol WithImplicitCorrectness 
  (^:private implicit-correctness [this])) 
(defn correctness 
  ([obj] 
     (or (::correctness (meta obj))  
         (implicit-correctness obj))) 
 
  ([obj & rest] 
     (apply max-correctness  
            (correctness obj)  
            (map correctness rest)))) 

Finally the correctness may be applied to an ob-
ject explicitly with: 
 
(defn with-correctness 
  [c obj] 
  (vary-meta obj assoc ::correctness c)) 
 

The latter approach is used in all arguments manipulation routines. 

6  Implicit Correctness for Some Known Types and Values 

The framework described here introduces implicit correctness as a prede-
fined set of procedures. In a conventional, imperative language with a static 
type system, like Ada or Java, achieving such functionality involves a signifi-
cant change(s) in a standard library, as one needs to define a set of polymor-
phic3 procedures dispatched on the types belonging to a standard library of the 
host language. Thankfully in Clojure we have protocols that are perfect means 
to implement the extension points for the desired functionality. 

The implicit correctness of a sequential collection is the aggregate correct-
ness of it's elements or a BORDER correctness if the collection is empty: 
 
(defn- implicit-seq-correctness 
  [coll] 
  (if-let [s (seq coll)] 
    (apply correctness s) 
    ;; an empty sequence is intentionally qualified  
    ;; as a BORDER one 
    BORDER)) 

                                                      
3 With an inclusive polymorphism as described by L. Cardelli [16] 
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For integrals we define 0, -1, 1, the maximum and minimum values as 
those having the BORDER correctness level and assign NON-BORDER to 
any others: 
 
(defn- implicit-integral-correctness 
  [^Number x ^Number min ^Number max] 
  (let [x (.longValue x)] 
    (if (or (= x (.longValue min)) 
            (= x (.longValue max)) 
            (= x  0) 
            (= x  1) 
            (= x -1)) 
      BORDER 
      NON-BORDER))) 

A similar approach applies to primitive floating-point values (ja-
va.lang.Float and java.lang.Double both in Java and in Clojure). Additional-
ly the infinite and NaN (Not-a-Number) values must be considered here. 
 
(defn- implicit-double-correctness 
  [^Double x] 
  (let [d (.doubleValue x)] 
    (if (or (Double/isNaN d) 
            (Double/isInfinite d) 
            (= d Double/MAX_VALUE) 
            (= d Double/MIN_NORMAL) 
            (= d Double/MIN_VALUE) 
            (= d  0.0) 
            (= d  1.0) 
            (= d -1.0)) 
      BORDER 
      NON-BORDER))) 
 

And then there is the protocol named WithImplicitCorrectness. Apart 
from the fact that it allows do implement all predefined out-of-the-box cor-
rectness values in the framework itself, it also gives the programmer a handle 
to define his own correctness assignments for types that will exist in the fu-
ture: 

 
(defprotocol WithImplicitCorrectness 
  (implicit-correctness [this])) 
 

The protocol when applied to collections uses the implicit-seq-correctness 
procedure, as defined earlier in this section. One exception is the pair (a type 
named kongra.core.Pair), but it does not differ much in the semantics when 
compared to the mentioned implementation procedure: 
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(extend-protocol WithImplicitCorrectness 
  ;; SEQUENTIAL COLLECTIONS 
  clojure.lang.Sequential 
  (implicit-correctness [this]  
     (implicit-seq-correctness this)) 
  java.util.List 
  (implicit-correctness [this]  
    (implicit-seq-correctness this)) 
  kongra.core.Pair 
  (implicit-correctness [this] 
    (correctness (.first this) (.second this))) 
  ;; SETS 
  java.util.Set 
  (implicit-correctness [this]  
    (implicit-seq-correctness this)) 
 

Associative containers (maps) have their correctness defined as an aggre-
gate correctness of all keys and values: 
 
  ;; MAPS (INCLUDING RECORDS) 
  java.util.Map 
  (implicit-correctness [this] 
    (if-let [entries (seq this)] 
      (implicit-seq-correctness (apply concat entries)) 
      ;; an empty map has a BORDER correctness 
      BORDER)) 
 

Strings have a BORDER correctness when they are blank (contain only 
white-space characters), and NON-BORDER otherwise: 
 
  ;; STRING-LIKE 
  java.lang.String 
  (implicit-correctness [this] 
    ;; a blank string is a BORDER one 
    (if (blank? this) BORDER NON-BORDER)) 
 

Clojure symbols and keywords “adopt” a similar String-like rule – their 
names are checked for being blank: 
 
  clojure.lang.Named ;; symbols, keywords 
  (implicit-correctness [this] 
    (if (blank? (.getName this))) 
      BORDER 
      NON-BORDER)) 
 

Here is how the implicit integral correctness is being defined in the protocol: 
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  ;; INTEGERS 
  java.lang.Byte 
  (implicit-correctness [this] 
    (implicit-integral-correctness this   
                                   Byte/MIN_VALUE 
                                   Byte/MAX_VALUE)) 
 
  java.lang.Short 
  (implicit-correctness [this] 
    (implicit-integral-correctness this  
                                   Short/MIN_VALUE  
                                   Short/MAX_VALUE)) 
 
  java.lang.Character 
  (implicit-correctness [this] 
    (implicit-integral-correctness  
      (int this) 
      (int Character/MIN_VALUE) 
      (int Character/MAX_VALUE))) 
 
  java.lang.Integer 
  (implicit-correctness [this] 
    (implicit-integral-correctness  
       this Integer/MIN_VALUE Integer/MAX_VALUE)) 
 
  java.lang.Long 
  (implicit-correctness [this] 
    (implicit-integral-correctness  
       this Long/MIN_VALUE Long/MAX_VALUE)) 
 

The big-integer types in Java and in Clojure also “define” 0, -1 and 1 as 
their BORDER values. As they do not impose any limits on how the integral 
values are allowed to be (the memory and CPU time are the only constraints), 
there are no max- or min-values being taken into account: 
 
  ;; BIG INTEGER, BIG INT 
  java.math.BigInteger 
  (implicit-correctness [this] 
    (if (or (.equals this java.math.BigInteger/ZERO) 
            (.equals this java.math.BigInteger/ONE) 
            (.equals this BIG-INTEGER-MINUS-ONE)) 
      BORDER 
      NON-BORDER)) 
  clojure.lang.BigInt 
  (implicit-correctness [this] 
    (if (or (.equals this  0N) 
            (.equals this  1N) 
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            (.equals this -1N)) 
      BORDER NON-BORDER)) 

The same applies to the arbitrary precision floating-point type ja-
va.math.BigDecimal: 
 
  ;; BIG DECIMAL 
  java.math.BigDecimal 
  (implicit-correctness [this] 
    (if (or (BD/= this  0M) 
            (BD/= this  1M) 
            (BD/= this -1M))       
      BORDER 
      NON-BORDER)) 
 

Due to their nature Clojure rational numbers represented by instances of 
clojure.lang.Ratio class [14], [15] are NON-BORDER values: 

 
  ;; RATIO 
  clojure.lang.Ratio 
  (implicit-correctness [this] NON-BORDER) 
 

Finally the protocol defines the correctness for floats: 
 
  ;; FLOATS 
  java.lang.Float 
  (implicit-correctness [this] 
    (implicit-double-correctness (ID/fldouble this))) 
 
  java.lang.Double 
  (implicit-correctness [this] 
    (implicit-double-correctness this)) 
 

and any other types, including null values (nil in Clojure) have their cor-
rectness undefined:  
  ;; OTHERS 
  java.lang.Object 
  (implicit-correctness [this] CORRECTNESS-UNDEFINED) 
 
  nil 
  (implicit-correctness [_] CORRECTNESS-UNDEFINED)) 
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7 Conclusions and Future Works 

The paper presented only a fraction of the whole work needed to fully im-
plement the initial idea. There are the following points that still wait for their 
detailed design and implementation: 
1. Routines to explicitly specify values with various levels of correctness for 

types 
2. The results model 
3. Behaviors storage 
4. Procedures evaluation with the automatically generated collections of ar-

guments 
5. Behaviors comparison 

 
The main technical sections of the article concatenated on presenting the 

correctness-related mechanisms and the arguments manipulating operators. 
When talking about the latter, there is an urge to design and implement an 
embedded4 DSL, a kind of a “regular expressions” language to make the 
usage of the arguments manipulation operators more effective in use than 
simply calling them explicitly. A sketch of an expression of this kind is like: 

 
^:prod [x & ^:vmapargs {:y 1 :z 2}] 
 

where the operators are used within the argist s-expression as a meta-data 
(defined with the Clojure keywords). Implementing this functionality is the 
first sub-task to be done during the future development activities on the 
framework presented here and it will be described in a future paper. 
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