

INTERNATIONAL JOURNAL OF APPLIED COMPUTER SCIENCE METHODS (JACSM)
is a semi-annual periodical published by the University of Social Sciences (SAN)
 in Lodz, Poland.

PUBLISHING AND EDITORIAL OFFICE:
University of Social Sciences (SAN)
Information Technology Institute (ITI)
Sienkiewicza 9
90-113 Lodz
Tel.: +48 42 6646654
Fax.: +48 42 6366251
E-mail: acsm@swspiz.pl
URL: http://acsm.swspiz.pl

Print: Mazowieckie Centrum Poligrafii, ul. Duża 1, 05-270 Marki, www.c-p.com.pl, biuro@c-p.com.pl

Copyright © 2013 University of Social Sciences, Lodz, Poland. All rights reserved.

AIMS AND SCOPE:
The International Journal of Applied Computer Science Methods is a semi-annual, refereed
periodical, publishes articles describing recent contributions in theory, practice and applications
of computer science. The broad scope of the journal includes, but is not limited to, the follow-
ing subject areas:
Knowledge Engineering and Information Management: Knowledge Processing, Knowledge
Representation, Data Mining, Machine Learning, Knowledge-based Systems, Knowledge Elici-
tation, Knowledge Acquisition, E-learning, Web-intelligence, Collective Intelligence, Language
Processing, Approximate Reasoning, Information Archive and Processing, Distributed Infor-
mation Systems.
Intelligent Systems: Intelligent Database Systems, Expert Systems, Decision Support Systems,
Intelligent Agent Systems, Artificial Neural Networks, Fuzzy Sets and Systems, Evolutionary
Methods and Systems, Hybrid Intelligent Systems, Cognitive Systems, Intelligent Systems and
Internet, Complex Adaptive Systems.
Image Understanding and Processing: Computer Vision, Image Processing, Computer
Graphics, Pattern Recognition, Virtual Reality, Multimedia Systems.
Computer Modeling, Simulation and Soft Computing: Applied Computer Modeling and
Simulation, Intelligent Computing and Applications, Soft Computing Methods, Intelligent Data
Analysis, Parallel Computing, Engineering Algorithms.
Applied Computer Methods and Computer Technology: Programming Technology, Data-
base Systems, Computer Networks Technology, Human-computer Interface, Computer Hard-
ware Engineering, Internet Technology, Biocybernetics.

DISTRIBUTION:
Apart from the standard way of distribution (in the conventional paper format), on-line disse-
mination of the JACSM is possible for interested readers.

CONTENTS

Ehsan Hosseini Asl, Jacek M. Zurada
Multiplicative Algorithm For Correntropy-Based
Nonnegative Matrix Factorization 89

Marek Orzyłowski, Mirosław Lewandowski
Computer Modeling Of Supercapacitor
With Cole-Cole Relaxation Model 105

Tadeusz Łyszkowski, Tomasz Wiechno, Mykhaylo Yatsymirskyy
Implementation Of The Wavelet Transform
With Sse Extensions 123

Konrad Grzanek
Equivalence In Java And Clojure, Design
And Implementation Considerations 137

Alina Marchlewska, Teresa Kuchta, Piotr Goetzen
The Problem Of The Digital Divide Versus
Professional Competence 155

Konrad Grzanek
Automated Procedure Behavior Tracing
In Functional Programming Style 165

INTERNATIONAL JOURNAL OF APPLIED COMPUTER SCIENCE METHODS (JACSM)
is a semi-annual periodical published by the University of Social Sciences (SAN)
 in Lodz, Poland.

PUBLISHING AND EDITORIAL OFFICE:
University of Social Sciences (SAN)
Information Technology Institute (ITI)
Sienkiewicza 9
90-113 Lodz
Tel.: +48 42 6646654
Fax.: +48 42 6366251
E-mail: acsm@swspiz.pl
URL: http://acsm.swspiz.pl

Print: Mazowieckie Centrum Poligrafii, ul. Duża 1, 05-270 Marki, www.c-p.com.pl, biuro@c-p.com.pl

Copyright © 2013 University of Social Sciences, Lodz, Poland. All rights reserved.

AIMS AND SCOPE:
The International Journal of Applied Computer Science Methods is a semi-annual, refereed
periodical, publishes articles describing recent contributions in theory, practice and applications
of computer science. The broad scope of the journal includes, but is not limited to, the follow-
ing subject areas:
Knowledge Engineering and Information Management: Knowledge Processing, Knowledge
Representation, Data Mining, Machine Learning, Knowledge-based Systems, Knowledge Elici-
tation, Knowledge Acquisition, E-learning, Web-intelligence, Collective Intelligence, Language
Processing, Approximate Reasoning, Information Archive and Processing, Distributed Infor-
mation Systems.
Intelligent Systems: Intelligent Database Systems, Expert Systems, Decision Support Systems,
Intelligent Agent Systems, Artificial Neural Networks, Fuzzy Sets and Systems, Evolutionary
Methods and Systems, Hybrid Intelligent Systems, Cognitive Systems, Intelligent Systems and
Internet, Complex Adaptive Systems.
Image Understanding and Processing: Computer Vision, Image Processing, Computer
Graphics, Pattern Recognition, Virtual Reality, Multimedia Systems.
Computer Modeling, Simulation and Soft Computing: Applied Computer Modeling and
Simulation, Intelligent Computing and Applications, Soft Computing Methods, Intelligent Data
Analysis, Parallel Computing, Engineering Algorithms.
Applied Computer Methods and Computer Technology: Programming Technology, Data-
base Systems, Computer Networks Technology, Human-computer Interface, Computer Hard-
ware Engineering, Internet Technology, Biocybernetics.

DISTRIBUTION:
Apart from the standard way of distribution (in the conventional paper format), on-line disse-
mination of the JACSM is possible for interested readers.

CONTENTS

Ehsan Hosseini Asl, Jacek M. Zurada
Multiplicative Algorithm For Correntropy-Based
Nonnegative Matrix Factorization 89

Marek Orzyłowski, Mirosław Lewandowski
Computer Modeling Of Supercapacitor
With Cole-Cole Relaxation Model 105

Tadeusz Łyszkowski, Tomasz Wiechno, Mykhaylo Yatsymirskyy
Implementation Of The Wavelet Transform
With Sse Extensions 123

Konrad Grzanek
Equivalence In Java And Clojure, Design
And Implementation Considerations 137

Alina Marchlewska, Teresa Kuchta, Piotr Goetzen
The Problem Of The Digital Divide Versus
Professional Competence 155

Konrad Grzanek
Automated Procedure Behavior Tracing
In Functional Programming Style 165

89

MULTIPLICATIVE ALGORITHM FOR
CORRENTROPY-BASED NONNEGATIVE

MATRIX FACTORIZATION

Ehsan Hosseini Asl1, Jacek M. Zurada1,2

1 Department of Electrical and Computer Engineering
University of Louisville, Louisville, KY, USA

ehsan.hosseiniasl@louisville.edu, jacek.zurada@louisville.edu
2IT Institute, University of Social Sciences
9 Sienkiewicza St., 90-113 Łódź, Poland

Abstract
Nonnegative matrix factorization (NMF) is a popular dimension reduction
technique used for clustering by extracting latent features from high-
dimensional data and is widely used for text mining. Several optimization
algorithms have been developed for NMF with different cost functions. In this
paper we evaluate the correntropy similarity cost function. Correntropy is a
nonlinear localized similarity measure which measures the similarity between
two random variables using entropy-based criterion, and is especially robust to
outliers. Some algorithms based on gradient descent have been used for
correntropy cost function, but their convergence is highly dependent on proper
initialization and step size and other parameter selection. The proposed general
multiplicative factorization algorithm uses the gradient descent algorithm with
adaptive step size to maximize the correntropy similarity between the data
matrix and its factorization. After devising the algorithm, its performance has
been evaluated for document clustering. Results were compared with
constrained gradient descent method using steepest descent and L-BFGS
methods. The simulations show that the performance of steepest descent and L-
BFGS convergence are highly dependent on gradient descent step size which
depends on σ parameter of correntropy cost function. However, the
multiplicative algorithm is shown to be less sensitive to σ parameterand yields
better clustering results than other algorithms. The results demonstrate that
clustering performance measured by entropy and purity improve the clustering.
The multiplicative correntropy-based algorithm also shows less variation in
accuracy of document clusters for variable number of clusters. The convergence
of each algorithm is also investigated, and the experiments have shown that the
multiplicative algorithm converges faster than L-BFGS and steepest descent
method.

Key words: Nonnegative Matrix Factorization (NMF), Correntropy,
Multiplicative Algorithm, Document Clustering

89

MULTIPLICATIVE ALGORITHM FOR
CORRENTROPY-BASED NONNEGATIVE

MATRIX FACTORIZATION

Ehsan Hosseini Asl1, Jacek M. Zurada1,2

1 Department of Electrical and Computer Engineering
University of Louisville, Louisville, KY, USA

ehsan.hosseiniasl@louisville.edu, jacek.zurada@louisville.edu
2IT Institute, University of Social Sciences
9 Sienkiewicza St., 90-113 Łódź, Poland

Abstract
Nonnegative matrix factorization (NMF) is a popular dimension reduction
technique used for clustering by extracting latent features from high-
dimensional data and is widely used for text mining. Several optimization
algorithms have been developed for NMF with different cost functions. In this
paper we evaluate the correntropy similarity cost function. Correntropy is a
nonlinear localized similarity measure which measures the similarity between
two random variables using entropy-based criterion, and is especially robust to
outliers. Some algorithms based on gradient descent have been used for
correntropy cost function, but their convergence is highly dependent on proper
initialization and step size and other parameter selection. The proposed general
multiplicative factorization algorithm uses the gradient descent algorithm with
adaptive step size to maximize the correntropy similarity between the data
matrix and its factorization. After devising the algorithm, its performance has
been evaluated for document clustering. Results were compared with
constrained gradient descent method using steepest descent and L-BFGS
methods. The simulations show that the performance of steepest descent and L-
BFGS convergence are highly dependent on gradient descent step size which
depends on σ parameter of correntropy cost function. However, the
multiplicative algorithm is shown to be less sensitive to σ parameterand yields
better clustering results than other algorithms. The results demonstrate that
clustering performance measured by entropy and purity improve the clustering.
The multiplicative correntropy-based algorithm also shows less variation in
accuracy of document clusters for variable number of clusters. The convergence
of each algorithm is also investigated, and the experiments have shown that the
multiplicative algorithm converges faster than L-BFGS and steepest descent
method.

Key words: Nonnegative Matrix Factorization (NMF), Correntropy,
Multiplicative Algorithm, Document Clustering

Multiplicative Algorithm For ...

90

1 Introduction

Large size of data is one of the central issues in data analysis research.
Processing these large amounts of data opens new issues related to data repre-
sentation, disambiguation, and dimensionality reduction. A useful representa-
tion typically makes latent structure in the data explicit, and often reduces the
dimensionality of the data so that additional computational methods can be
applied. In this process it is important to reduce the data size without losing its
most essential features. Therefore, a common ground in the various approach-
es of data mining is to replace the original data with a lower dimensional re-
presentation obtained via subspace approximation [1, 2, 4].

There are several methods to reduce the dimensionality of large data such
as Principal Component Analysis (PCA), Singular Value Decomposition
(SVD) and Independent Component Analysis (ICA). Often the data to be ana-
lyzed is nonnegative, and the low-rank data are further required to be com-
prised of nonnegative values in order to avoid contradicting physical realities.
However, these classical tools cannot guarantee to maintain the nonnegativity
[1]. Therefore, an approach of finding reduced rank nonnegative factors to
approximate a given nonnegative data matrix becomes a natural choice. The
Nonnegative Matrix Factorization (NMF) approach allows to create a lower
rank data out of original data, while maintaining nonnegativity of matrices
entries [1, 2, 3].

The NMF technique approximates a data matrix with the product of low
rank matrices and , such that and the elements of and are
nonnegative [1,2]. If columns of would be data samples, then the columns of

can be interpreted as basis or parts from which data samples are formed,
while the columns of give the contribution of each basiswhich when com-
bined form the corresponding data sample. In application of NMF to cluster-
ing, it is common to define clusters based on each basis vector, and assigning
each data sample to a cluster based on basis contribution intensity which is
found from matrix .

Several cost functions have been used in the literature to implement the
NMF for various types of applications and data type. Euclidean distance is the
most common cost function used for many applications including text mining
[1]. Kullback-Leibler divergence (KL-divergence) [1, 2], -divergence [21,
22] are among other methods also used for different applications. However,
the main issue is to find the matrix factors () that minimize the chosen
cost function. There are several optimization algorithms in the literature to
perform this optimum decomposition [3, 4, 8, 10, 11, 12]. Correntropy simi-
larity function is a recently proposed cost function which has been used for
different tasks of pattern recognition [23]. It has been introduced to NMF only
recently in [24, 25, 26]. In this paper, a multiplicative algorithm for corren-

Asl E. H., Zurada J. M.

91

tropy-based NMF (MACB-NMF) has been developed and its performance has
been investigated in comparison to general gradient descent method for doc-
ument clustering application using several metrics.

This paper is organized as follows. Section 2 introduces the correntropy
cost function. Section 3 discusses some developed optimization algorithms for
NMF. In section 4, a multiplicative update algorithm for correntropy cost
function (MACB) is presented. Experiments on real data set are presented in
Section 5. The discussion and conclusions are presented in Section 6.

2 Correntropy Similarity Function

Given a data matrix � � ���� and a positive integer � � ��� ��� ��, find
nonnegative factorization into matrices � � ���� and � � ���� as

 �(�|��)������ ������� �� � � �� � � � (�)
where:

� � �expresses nonnegativity of the entries of �(and not semidefinite
positiveness),
�(�|��)isa measure for goodness of fit such that

�(�|��) = � � �(�����|������)
�

���
 (2)

�

���

where:

d(x|y) is a scalar cost function [22].
Several cost function are used and most of them use the Bregman diver-

gence [7]. Generally, a divergence function is defined as follows

��(�� �) = �� �� � ��

� + ��(� � �) � � � (����
�(���� � ����) + (� � �) � � = �

 (3)

where:
� is chosen to define the type of the divergence function.

Obviously, ��(�� �) = (� � �)� is the Euclidean distance function, and
��(�� �) defines KL-divergence [13]. The most common function found in
literature is shown below

Multiplicative Algorithm For ...

90

1 Introduction

Large size of data is one of the central issues in data analysis research.
Processing these large amounts of data opens new issues related to data repre-
sentation, disambiguation, and dimensionality reduction. A useful representa-
tion typically makes latent structure in the data explicit, and often reduces the
dimensionality of the data so that additional computational methods can be
applied. In this process it is important to reduce the data size without losing its
most essential features. Therefore, a common ground in the various approach-
es of data mining is to replace the original data with a lower dimensional re-
presentation obtained via subspace approximation [1, 2, 4].

There are several methods to reduce the dimensionality of large data such
as Principal Component Analysis (PCA), Singular Value Decomposition
(SVD) and Independent Component Analysis (ICA). Often the data to be ana-
lyzed is nonnegative, and the low-rank data are further required to be com-
prised of nonnegative values in order to avoid contradicting physical realities.
However, these classical tools cannot guarantee to maintain the nonnegativity
[1]. Therefore, an approach of finding reduced rank nonnegative factors to
approximate a given nonnegative data matrix becomes a natural choice. The
Nonnegative Matrix Factorization (NMF) approach allows to create a lower
rank data out of original data, while maintaining nonnegativity of matrices
entries [1, 2, 3].

The NMF technique approximates a data matrix with the product of low
rank matrices and , such that and the elements of and are
nonnegative [1,2]. If columns of would be data samples, then the columns of

can be interpreted as basis or parts from which data samples are formed,
while the columns of give the contribution of each basiswhich when com-
bined form the corresponding data sample. In application of NMF to cluster-
ing, it is common to define clusters based on each basis vector, and assigning
each data sample to a cluster based on basis contribution intensity which is
found from matrix .

Several cost functions have been used in the literature to implement the
NMF for various types of applications and data type. Euclidean distance is the
most common cost function used for many applications including text mining
[1]. Kullback-Leibler divergence (KL-divergence) [1, 2], -divergence [21,
22] are among other methods also used for different applications. However,
the main issue is to find the matrix factors () that minimize the chosen
cost function. There are several optimization algorithms in the literature to
perform this optimum decomposition [3, 4, 8, 10, 11, 12]. Correntropy simi-
larity function is a recently proposed cost function which has been used for
different tasks of pattern recognition [23]. It has been introduced to NMF only
recently in [24, 25, 26]. In this paper, a multiplicative algorithm for corren-

Asl E. H., Zurada J. M.

91

tropy-based NMF (MACB-NMF) has been developed and its performance has
been investigated in comparison to general gradient descent method for doc-
ument clustering application using several metrics.

This paper is organized as follows. Section 2 introduces the correntropy
cost function. Section 3 discusses some developed optimization algorithms for
NMF. In section 4, a multiplicative update algorithm for correntropy cost
function (MACB) is presented. Experiments on real data set are presented in
Section 5. The discussion and conclusions are presented in Section 6.

2 Correntropy Similarity Function

Given a data matrix � � ���� and a positive integer � � ��� ��� ��, find
nonnegative factorization into matrices � � ���� and � � ���� as

 �(�|��)������ ������� �� � � �� � � � (�)
where:

� � �expresses nonnegativity of the entries of �(and not semidefinite
positiveness),
�(�|��)isa measure for goodness of fit such that

�(�|��) = � � �(�����|������)
�

���
 (2)

�

���

where:

d(x|y) is a scalar cost function [22].
Several cost function are used and most of them use the Bregman diver-

gence [7]. Generally, a divergence function is defined as follows

��(�� �) = �� �� � ��

� + ��(� � �) � � � (����
�(���� � ����) + (� � �) � � = �

 (3)

where:
� is chosen to define the type of the divergence function.

Obviously, ��(�� �) = (� � �)� is the Euclidean distance function, and
��(�� �) defines KL-divergence [13]. The most common function found in
literature is shown below

Multiplicative Algorithm For ...

92

����������(�|��) � � � 1
2

�

���

�

���
���� − (��)���� (4)

Using the above notation, the correntropy cost function is defined as

������������(�|�) � −��� �−(� − �)�

2�� � (�)

������������(�|��) � − � � ��� �−���� − (��)����

2�� �
�

���

�

���
 (6)

where:
�is a parameter of correntropy measure.

The optimization algorithms try to minimize the correntropy, since it is a
similarity instead of distance between two elements. The algorithm for mini-
mizing these cost functions is introduced in the next section.

3 Optimization Algorithms

A key issue of NMF factorization is to minimize the cost function while
keeping elements of � and � matrices nonnegative. Another challenge is the
existence of local minima due to non-convexity of �(�|��) in both �and
�. Moreover, a unique solution to NMF problem does not exist, since for any
invertible matrix � whose inverse is ���, a term ������ could also be
nonnegative. This is most probably the main reason for non-convexity of
�(�|��) function [13].

Several algorithms exist for minimizing cost functions in the NMF context.
Lee and Seung [1, 2] developed a multiplicative algorithm for solving Eucli-
dean and KL-divergence in 2001. Sparse Coding and sparseness constraint
which impose sparsity on � matrix was proposed by Hoyer in 2002 and 2004
[3, 5]. Alternating Least Square (ALS) [12], ALS using projected gradient
descent (ALSPGRAD) [14], gradient descent with constrained least square
(GD-CLS) [9], Quasi Newton method [11], Alternating Nonnegative Con-
strained Least Squares (ANLS) using active set and block principal pivoting
[17, 20], Hierarchical Alternating Least Square (HALS) [19] was proposed for
Euclidean cost function. Fevotte et al proposed several algorithms for mini-
mizing β-divergence cost function [21, 22]. In 2012, Li et al convert general

Asl E. H., Zurada J. M.

93

Bregman divergence to Euclidean distance function using Taylor expansion
and solve the corresponding function using HALS algorithm [25]. Du et al
proposed a half-quadratic optimization algorithm to solve NMF based on cor-
rentropy cost function and developed a multiplicative algorithm for resulting
weighted NMF [26].

In 2012, Ensari et al used general algorithms of Constrained Gradient Des-
cent (CGD) method for solving the correntropy function [18] and compared
the results with projected gradient descent method of Euclidean cost function
[24, 25]. The major disadvantage of CGD is its dependency on � parameter of
correntropy cost function. As will be shown in the next section, the update
rate of CGD algorithm is based on this parameter. In the next section, we de-
rive the CGD algorithm based on multiplicative update rule which has adap-
tive update learning rate and less sensitivity to variation of � parameter.

4 Multiplicative Algorithm for Correntropy-based NMF

This section proposes a multiplicative algorithm for correntropy cost func-
tion (MACB). To minimize (6) using gradient descent algorithm, its gradient
should be taken with respect to � and � matrices’ elements which are para-
meters of cost function. The gradients ∇������ ∇�(��)are calculated as fol-
lows,

∇�(��(�‖��)) = 1 ��� ���� �−(� − ��)�

��� � �(�� − �)� �� (7)

∇�(��(�‖��)) = 1 ��� �� �(�� − �)���� �−(� − ��)�

��� �� (8)

where:

⊙is the element-wise product of two matrices.
As can be seen from Equations(7) and (8), the gradient formula involves

the step size in the direction of gradient that is proportional to 1 σ�⁄ parame-
ter. Therefore, the gradient step variation could cause the solution to deviate
from the limit points of the feasible region. This may result in unsatisfactory
solution for �and �.

The multiplicative gradient descent approach is equivalent to updating
each parameter by multiplying its value at previous iteration by the ratio of
the negative and positive parts of the gradient of the cost function with regard
to this parameter [2, 11]. Suppose there is a function �(�) which should be
minimized over �. Gradient descent using multiplicative algorithm is equiva-
lent to,

Multiplicative Algorithm For ...

92

����������(�|��) � � � 1
2

�

���

�

���
���� − (��)���� (4)

Using the above notation, the correntropy cost function is defined as

������������(�|�) � −��� �−(� − �)�

2�� � (�)

������������(�|��) � − � � ��� �−���� − (��)����

2�� �
�

���

�

���
 (6)

where:
�is a parameter of correntropy measure.

The optimization algorithms try to minimize the correntropy, since it is a
similarity instead of distance between two elements. The algorithm for mini-
mizing these cost functions is introduced in the next section.

3 Optimization Algorithms

A key issue of NMF factorization is to minimize the cost function while
keeping elements of � and � matrices nonnegative. Another challenge is the
existence of local minima due to non-convexity of �(�|��) in both �and
�. Moreover, a unique solution to NMF problem does not exist, since for any
invertible matrix � whose inverse is ���, a term ������ could also be
nonnegative. This is most probably the main reason for non-convexity of
�(�|��) function [13].

Several algorithms exist for minimizing cost functions in the NMF context.
Lee and Seung [1, 2] developed a multiplicative algorithm for solving Eucli-
dean and KL-divergence in 2001. Sparse Coding and sparseness constraint
which impose sparsity on � matrix was proposed by Hoyer in 2002 and 2004
[3, 5]. Alternating Least Square (ALS) [12], ALS using projected gradient
descent (ALSPGRAD) [14], gradient descent with constrained least square
(GD-CLS) [9], Quasi Newton method [11], Alternating Nonnegative Con-
strained Least Squares (ANLS) using active set and block principal pivoting
[17, 20], Hierarchical Alternating Least Square (HALS) [19] was proposed for
Euclidean cost function. Fevotte et al proposed several algorithms for mini-
mizing β-divergence cost function [21, 22]. In 2012, Li et al convert general

Asl E. H., Zurada J. M.

93

Bregman divergence to Euclidean distance function using Taylor expansion
and solve the corresponding function using HALS algorithm [25]. Du et al
proposed a half-quadratic optimization algorithm to solve NMF based on cor-
rentropy cost function and developed a multiplicative algorithm for resulting
weighted NMF [26].

In 2012, Ensari et al used general algorithms of Constrained Gradient Des-
cent (CGD) method for solving the correntropy function [18] and compared
the results with projected gradient descent method of Euclidean cost function
[24, 25]. The major disadvantage of CGD is its dependency on � parameter of
correntropy cost function. As will be shown in the next section, the update
rate of CGD algorithm is based on this parameter. In the next section, we de-
rive the CGD algorithm based on multiplicative update rule which has adap-
tive update learning rate and less sensitivity to variation of � parameter.

4 Multiplicative Algorithm for Correntropy-based NMF

This section proposes a multiplicative algorithm for correntropy cost func-
tion (MACB). To minimize (6) using gradient descent algorithm, its gradient
should be taken with respect to � and � matrices’ elements which are para-
meters of cost function. The gradients ∇������ ∇�(��)are calculated as fol-
lows,

∇�(��(�‖��)) = 1 ��� ���� �−(� − ��)�

��� � �(�� − �)� �� (7)

∇�(��(�‖��)) = 1 ��� �� �(�� − �)���� �−(� − ��)�

��� �� (8)

where:

⊙is the element-wise product of two matrices.
As can be seen from Equations(7) and (8), the gradient formula involves

the step size in the direction of gradient that is proportional to 1 σ�⁄ parame-
ter. Therefore, the gradient step variation could cause the solution to deviate
from the limit points of the feasible region. This may result in unsatisfactory
solution for �and �.

The multiplicative gradient descent approach is equivalent to updating
each parameter by multiplying its value at previous iteration by the ratio of
the negative and positive parts of the gradient of the cost function with regard
to this parameter [2, 11]. Suppose there is a function �(�) which should be
minimized over �. Gradient descent using multiplicative algorithm is equiva-
lent to,

Multiplicative Algorithm For ...

94

� � � [� � (�)]�
[� � (�)]�

 (1)

where:

 �� (�) = [� � (�)]� − [� � (�)]� (10)

and the summands are both nonnegative.This ensures nonnegativity of the
parameter updates, provided initializationis with a nonnegative value. A fixed
point �⋆ of the algorithm implies either �� (��) = 0 or �⋆ = 0[21, 22]. We
apply this algorithm on Correntropy function gradients, Equations (7) and (8),
and derive the update formula for � and � matrices respectively as follows,

� � � [∇�(��(�‖��))]�
[∇�(��(�‖��))]�

 (11)

� � � ⊙
�exp �−(� − ��)�

2�� � ⊙ �� ��

�exp �−(� − ��)�
2�� � ⊙ (��)� ��

 (12)

� � � [∇�(��(�‖��))]�
[∇�(��(�‖��))]�

 (13)

� � � ⊙
�� �� ⊙ exp �−(� − ��)�

2�� ��

�� �(��) ⊙ exp �−(� − ��)�
2�� ��

 (14)

As can be seen from Equations (12) and (14), the � parameter is in nume-
rator and denominator of update algorithm, which reduce the effect of varia-
tion of this parameter to the update algorithm. Although, we do not prove the
non-increasing property of multiplicative update algorithm with Correntropy
criterion analytically, the experimental results show that it is monotonic and
non-increasing. It also give better results in comparison to other gradient des-
cent methods. Therefore, MACB algorithm for NMF is as follows:

MACB-NMF Algorithm:
(1) Initialize � and � with nonnegative values, and scale the columns of �

to unit norm.
(2) Iterate until convergence or for � iterations:

Asl E. H., Zurada J. M.

95

(a) ��� � ���
��������(����)�

��� ��������
��

���������(����)�
��� ���(��)����

��
��
�����������������[� � 10��]

(b) ��� � ���
�����������(����)�

��� ���
��

����(��)�������(����)�
��� ���

��
��
����������[� � 10��]

5 Experiments

This section outlines the design procedure of an experiment to test MACB
algorithm. We employ Reuters Documents Corpus for document clustering.
This original dataset contains 21578 documents and 135 topics or document
clusters created manually. Each document in the corpus is been assigned one
or more topics or category labels based on its content. The size of each cluster
which is the number of documents it contains, range from less than ten to four
thousand. For this experiment, documents associated with only one topic are
used and topics which contain less than five documents are discarded [9].
Therefore, 8293 documents with 48 topics were left at the end. In order to
evaluate the performance of the MACB for increasing complexity, i.e., the
number of clusters to be created or the � parameter, ten different � values of
[2, 4, 6, 8, 10, 15, 20, 30, 40, 48] are chosen.

After creating clusters using NMF, the cluster is assigned to a most related
document topic. For this purpose, a matrix which shows the distribution of all
documents between each created cluster and dataset topics is created. The ma-
trix’s dimension is � � �, which � is the number of clusters and � is the number
of topics. This matrix is called Document Distribution Matrix (DDM). The
maximum value at each column of DDM is found first. Then, the correspond-
ing document topic related to this column is assigned to the NMF cluster re-
lated to the row number. At the end of this process, there may be some NMF
clusters which are not assigned to any topic. Some of these clusters may con-
tain large number of documents, and omitting them may reduce the accuracy
metric. To assign these NMF clusters to a topic, the maximum value found in a
row of DDM related to any of these NMF clusters is used for the topic assign-
ment. It turns out that the related column of the founded value indicates the
topic to be assigned. This method may results in assigning some of NMF clus-
ters to more than one topic.

We evaluate the clustering performance with Accuracy, Root Mean Square
Residual (RMSR), Entropy, Purity, and computational time metrics. Accuracy
of clustering is assessed using the metric �� used by [4] is defined

Multiplicative Algorithm For ...

94

� � � [� � (�)]�
[� � (�)]�

 (1)

where:

 �� (�) = [� � (�)]� − [� � (�)]� (10)

and the summands are both nonnegative.This ensures nonnegativity of the
parameter updates, provided initializationis with a nonnegative value. A fixed
point �⋆ of the algorithm implies either �� (��) = 0 or �⋆ = 0[21, 22]. We
apply this algorithm on Correntropy function gradients, Equations (7) and (8),
and derive the update formula for � and � matrices respectively as follows,

� � � [∇�(��(�‖��))]�
[∇�(��(�‖��))]�

 (11)

� � � ⊙
�exp �−(� − ��)�

2�� � ⊙ �� ��

�exp �−(� − ��)�
2�� � ⊙ (��)� ��

 (12)

� � � [∇�(��(�‖��))]�
[∇�(��(�‖��))]�

 (13)

� � � ⊙
�� �� ⊙ exp �−(� − ��)�

2�� ��

�� �(��) ⊙ exp �−(� − ��)�
2�� ��

 (14)

As can be seen from Equations (12) and (14), the � parameter is in nume-
rator and denominator of update algorithm, which reduce the effect of varia-
tion of this parameter to the update algorithm. Although, we do not prove the
non-increasing property of multiplicative update algorithm with Correntropy
criterion analytically, the experimental results show that it is monotonic and
non-increasing. It also give better results in comparison to other gradient des-
cent methods. Therefore, MACB algorithm for NMF is as follows:

MACB-NMF Algorithm:
(1) Initialize � and � with nonnegative values, and scale the columns of �

to unit norm.
(2) Iterate until convergence or for � iterations:

Asl E. H., Zurada J. M.

95

(a) ��� � ���
��������(����)�

��� ��������
��

���������(����)�
��� ���(��)����

��
��
�����������������[� � 10��]

(b) ��� � ���
�����������(����)�

��� ���
��

����(��)�������(����)�
��� ���

��
��
����������[� � 10��]

5 Experiments

This section outlines the design procedure of an experiment to test MACB
algorithm. We employ Reuters Documents Corpus for document clustering.
This original dataset contains 21578 documents and 135 topics or document
clusters created manually. Each document in the corpus is been assigned one
or more topics or category labels based on its content. The size of each cluster
which is the number of documents it contains, range from less than ten to four
thousand. For this experiment, documents associated with only one topic are
used and topics which contain less than five documents are discarded [9].
Therefore, 8293 documents with 48 topics were left at the end. In order to
evaluate the performance of the MACB for increasing complexity, i.e., the
number of clusters to be created or the � parameter, ten different � values of
[2, 4, 6, 8, 10, 15, 20, 30, 40, 48] are chosen.

After creating clusters using NMF, the cluster is assigned to a most related
document topic. For this purpose, a matrix which shows the distribution of all
documents between each created cluster and dataset topics is created. The ma-
trix’s dimension is � � �, which � is the number of clusters and � is the number
of topics. This matrix is called Document Distribution Matrix (DDM). The
maximum value at each column of DDM is found first. Then, the correspond-
ing document topic related to this column is assigned to the NMF cluster re-
lated to the row number. At the end of this process, there may be some NMF
clusters which are not assigned to any topic. Some of these clusters may con-
tain large number of documents, and omitting them may reduce the accuracy
metric. To assign these NMF clusters to a topic, the maximum value found in a
row of DDM related to any of these NMF clusters is used for the topic assign-
ment. It turns out that the related column of the founded value indicates the
topic to be assigned. This method may results in assigning some of NMF clus-
ters to more than one topic.

We evaluate the clustering performance with Accuracy, Root Mean Square
Residual (RMSR), Entropy, Purity, and computational time metrics. Accuracy
of clustering is assessed using the metric �� used by [4] is defined

Multiplicative Algorithm For ...

96

�� � � �(��) �⁄
�

���
 (15)

where:

�(��) is set to 1 if �� has the same topic label for both NMF cluster
and the original topic, and otherwise set to 0,
� is the total number of documents in the collection.

The RMSR between � and �and � matrix is dened as:

���� � �∑ ���� � ������
��

� � � (16)

Total entropy for a set of clusters is calculated as the weighted mean of the
entropies of each cluster weighted by the size of each cluster [8]. Using DDM,
we compute ��� for topic �, the probability that a member of cluster � belongs
to topic � as ��� � ��� ��⁄ , where �� is the number of objects in cluster � and
��� is the number of documents of topic � in cluster �. Entropy of each cluster
is defined as:

�� � � � ��� log������
�

���
 (17)

where:
� is the number of topics.

Entropy of the full data set as the sum of the entropies of each cluster
weighted by the size of each cluster:

� � � ��
� ��

�

���
 (18)

where:
� is the number of NMF clusters,
� is the total number of documents.

Asl E. H., Zurada J. M.

97

Purity measures the extent to which each NMF cluster contained docu-
ments from primarily one topic [16]. Purity of a NMF clustering is obtained
as a weighted sum of individual NMF cluster Purity values and is given by

�(��) = 1
��

�������
�� (1�)

������ = � ��
� �(��)

�

���
 (20)

where:
��is a particular NMF cluster of size ��,
��

�is the number of documents of the � � �� topic that were assigned
to the � � �� NMF cluster,
�is the number of clusters,
�is the total number of documents.

In general, the larger the Purity value, the better the clustering solution.
We also compute the computational time taken by each minimization algo-
rithms in terms of CPU time measured in second.

For performance evaluation of MACB, the results of this algorithm were
compared to Steepest Descent (SD) and L-BFGS methods of gradient descent
algorithm implemented in MATLAB [18], and robust Correntropy Induced
Metric (rCIM) [26]. For each algorithm, three clustering experiments were
executed based on normalization of � and � matrices. As mentioned before,
NMF does not have a unique solution, and it is better to normalize either W or
H to have a consistent factorization of a particular dataset when using differ-
ent algorithms. This procedure is also taken to investigate the effect of norma-
lization of these � and � matrices on the clustering result. Therefore, we
implement three experiments for each algorithm, one without normalization,
another using normalization of � matrix’s columns, and the last one with
normalization on each row of � matrix.

Since � value has an effect on update learning rate of SD, L-BFGS and
rCIM algorithms, improper selection of �could result in poor clustering.
However, � value have a small effect on MACB update algorithm, because
the effect of � is significantly decreased by the division in formula of MACB
algorithm. Moreover, the learning rate is adaptive and is proportional to �
and � matrices in each step of MACB algorithm. By implementing several
experiments, we realize that the best value which yields the highest AC, low-
est Entropy and highest Purity in clustering for each algorithm is � = 1. We
continue the experiment with three methods of normalization for MACB algo-

Multiplicative Algorithm For ...

96

�� � � �(��) �⁄
�

���
 (15)

where:

�(��) is set to 1 if �� has the same topic label for both NMF cluster
and the original topic, and otherwise set to 0,
� is the total number of documents in the collection.

The RMSR between � and �and � matrix is dened as:

���� � �∑ ���� � ������
��

� � � (16)

Total entropy for a set of clusters is calculated as the weighted mean of the
entropies of each cluster weighted by the size of each cluster [8]. Using DDM,
we compute ��� for topic �, the probability that a member of cluster � belongs
to topic � as ��� � ��� ��⁄ , where �� is the number of objects in cluster � and
��� is the number of documents of topic � in cluster �. Entropy of each cluster
is defined as:

�� � � � ��� log������
�

���
 (17)

where:
� is the number of topics.

Entropy of the full data set as the sum of the entropies of each cluster
weighted by the size of each cluster:

� � � ��
� ��

�

���
 (18)

where:
� is the number of NMF clusters,
� is the total number of documents.

Asl E. H., Zurada J. M.

97

Purity measures the extent to which each NMF cluster contained docu-
ments from primarily one topic [16]. Purity of a NMF clustering is obtained
as a weighted sum of individual NMF cluster Purity values and is given by

�(��) = 1
��

�������
�� (1�)

������ = � ��
� �(��)

�

���
 (20)

where:
��is a particular NMF cluster of size ��,
��

�is the number of documents of the � � �� topic that were assigned
to the � � �� NMF cluster,
�is the number of clusters,
�is the total number of documents.

In general, the larger the Purity value, the better the clustering solution.
We also compute the computational time taken by each minimization algo-
rithms in terms of CPU time measured in second.

For performance evaluation of MACB, the results of this algorithm were
compared to Steepest Descent (SD) and L-BFGS methods of gradient descent
algorithm implemented in MATLAB [18], and robust Correntropy Induced
Metric (rCIM) [26]. For each algorithm, three clustering experiments were
executed based on normalization of � and � matrices. As mentioned before,
NMF does not have a unique solution, and it is better to normalize either W or
H to have a consistent factorization of a particular dataset when using differ-
ent algorithms. This procedure is also taken to investigate the effect of norma-
lization of these � and � matrices on the clustering result. Therefore, we
implement three experiments for each algorithm, one without normalization,
another using normalization of � matrix’s columns, and the last one with
normalization on each row of � matrix.

Since � value has an effect on update learning rate of SD, L-BFGS and
rCIM algorithms, improper selection of �could result in poor clustering.
However, � value have a small effect on MACB update algorithm, because
the effect of � is significantly decreased by the division in formula of MACB
algorithm. Moreover, the learning rate is adaptive and is proportional to �
and � matrices in each step of MACB algorithm. By implementing several
experiments, we realize that the best value which yields the highest AC, low-
est Entropy and highest Purity in clustering for each algorithm is � = 1. We
continue the experiment with three methods of normalization for MACB algo-

Multiplicative Algorithm For ...

98

rithm and compare them to -normalized case (normalization on each col-
umn of matrix) for SD, L-BFGS, and rCIM algorithms with for
three algorithms of optimization. AC, Entropy and Purity of clustering are
shown in Figure 1-3 respectively,

Figure 1. Accuracy of SD, L-BFGS, rCIM, and MACB algorithm

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy

k

Un-normalized
H-normalized
W-normalized
SD
L-BFGS
rCIM

Asl E. H., Zurada J. M.

99

Figure 2. Entropy of SD, L-BFGS, and MACB algorithm

Figure 3. Purity of SD, L-BFGS, and MACB algorithm

0 5 10 15 20 25 30 35 40 45 50
1.6

1.8

2

2.2

2.4

2.6

2.8

3
Entropy

k

Un-normalized
H-normalized
W-normalized
SD
L-BFGS
rCIM

0 5 10 15 20 25 30 35 40 45 50
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Purity

k

Un-normalized
H-normalized
W-normalized
SD
L-BFGS
rCIM

Multiplicative Algorithm For ...

98

rithm and compare them to -normalized case (normalization on each col-
umn of matrix) for SD, L-BFGS, and rCIM algorithms with for
three algorithms of optimization. AC, Entropy and Purity of clustering are
shown in Figure 1-3 respectively,

Figure 1. Accuracy of SD, L-BFGS, rCIM, and MACB algorithm

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy

k

Un-normalized
H-normalized
W-normalized
SD
L-BFGS
rCIM

Asl E. H., Zurada J. M.

99

Figure 2. Entropy of SD, L-BFGS, and MACB algorithm

Figure 3. Purity of SD, L-BFGS, and MACB algorithm

0 5 10 15 20 25 30 35 40 45 50
1.6

1.8

2

2.2

2.4

2.6

2.8

3
Entropy

k

Un-normalized
H-normalized
W-normalized
SD
L-BFGS
rCIM

0 5 10 15 20 25 30 35 40 45 50
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Purity

k

Un-normalized
H-normalized
W-normalized
SD
L-BFGS
rCIM

Multiplicative Algorithm For ...

100

It is clear that MACB algorithm yields smaller Entropy and higher Purity
for all values of �. However, SD, L-BFGS, and rCIM algorithms have low
Entropy and high Purity only for � � ��������. On the other hand, MACB
have a consistent change in AC, Entropy, and Purity for different values of �.
Moreover, as � increase, the quality of clustering improves for MACB. To
have a good comparison between all algorithms, we select two values of �
which results in highest AC, lowest Entropy and highest Purity. According to
Fig.1-3, these metrics occurs in � � ���� ���. Therefore we tabulate the clus-
tering result of each algorithm for corresponding � values in Table 1 and 2.

Tables 1 and 2 indicate that MACB algorithm give better Entropy and Pur-
ity in comparison to the other algorithms. The RMSR metric is also small for
MACB algorithm, while this metric is too large for SD, L-BFGS and rCIM.
This indicates a large error between ��and�. One may notice that the com-
putational time of MACBand rCIM algorithms is higher than SD and L-BFGS
algorithms. The reason is that in each step of algorithm, there are two multip-
lications and divisions for updating � and � in MACB and rCIM algorithms,
which do not exist in SD and L-BFGS algorithms. The multiplication and
division of these large matrices are highly computational and time consuming.

As a result, we can conclude that the computed � and � matrices using
MACB algorithm offer the best approximation of documents dataset among
other correntropy-based NMF. The minimization of correntropy cost function
for 40 iterations is shown in Fig.4 for all algorithms. It demonstrates that
MACB algorithm has a faster convergence than SD, L-BFGS and rCIM algo-
rithms. Gradient minimization curve for � � ����������� is shown in Figure
5. It indicates that as the value of � increases, the gradient minimizes more
slowly. This implies that the algorithm reaches the limit point of feasible re-
gion, and the constraint of nonnegativity does not allow the optimization algo-
rithm to converge. We propose that other algorithms like alternating least
square method with nonnegativity constraint and hierarchical ALS could be
investigated on this case for future work.

Table 1. Comparison between performance of different NMF algorithms, k=15

Algorithm RMSR Accuracy Entropy Purity CPU

time (sec)
SD 1983 0.9401 2.8834 0.4582 552
L-BFGS 2517 0.1469 2.8634 0.4496 602
MACB
(W-normalized) 0.3328 0.5530 1.8920 0.6514 2353

MACB
(H-normalized) 0.3328 0.7528 1.9191 0.6551 2353

Asl E. H., Zurada J. M.

101

Table 2. Comparison between performance of different NMF algorithms, k=20

Algorithm RMSR Accuracy Entropy Purity CPU

time (sec)
SD 53594 0.8961 2.8616 0.4527 535
L-BFGS 17.75 0.6274 2.8399 0.4496 605
Multiplicative
(W-normalized) 0.9776 0.5507 1.8094 0.6475 2513

Multiplicative
(H-normalized) 0.9776 0.5360 1.8567 0.6479 2513

Figure 4. Correntropy cost function minimization curve

0 5 10 15 20 25 30 35 40
-2

-1

0
x 108 Correntropy cost function minimization, k=15

D
(A

|W
H

)

SD
L-BFGS
MACB

0 5 10 15 20 25 30 35 40
-2

-1

0
x 108 k=20

iteration

D
(A

|W
H

)

Multiplicative Algorithm For ...

100

It is clear that MACB algorithm yields smaller Entropy and higher Purity
for all values of �. However, SD, L-BFGS, and rCIM algorithms have low
Entropy and high Purity only for � � ��������. On the other hand, MACB
have a consistent change in AC, Entropy, and Purity for different values of �.
Moreover, as � increase, the quality of clustering improves for MACB. To
have a good comparison between all algorithms, we select two values of �
which results in highest AC, lowest Entropy and highest Purity. According to
Fig.1-3, these metrics occurs in � � ���� ���. Therefore we tabulate the clus-
tering result of each algorithm for corresponding � values in Table 1 and 2.

Tables 1 and 2 indicate that MACB algorithm give better Entropy and Pur-
ity in comparison to the other algorithms. The RMSR metric is also small for
MACB algorithm, while this metric is too large for SD, L-BFGS and rCIM.
This indicates a large error between ��and�. One may notice that the com-
putational time of MACBand rCIM algorithms is higher than SD and L-BFGS
algorithms. The reason is that in each step of algorithm, there are two multip-
lications and divisions for updating � and � in MACB and rCIM algorithms,
which do not exist in SD and L-BFGS algorithms. The multiplication and
division of these large matrices are highly computational and time consuming.

As a result, we can conclude that the computed � and � matrices using
MACB algorithm offer the best approximation of documents dataset among
other correntropy-based NMF. The minimization of correntropy cost function
for 40 iterations is shown in Fig.4 for all algorithms. It demonstrates that
MACB algorithm has a faster convergence than SD, L-BFGS and rCIM algo-
rithms. Gradient minimization curve for � � ����������� is shown in Figure
5. It indicates that as the value of � increases, the gradient minimizes more
slowly. This implies that the algorithm reaches the limit point of feasible re-
gion, and the constraint of nonnegativity does not allow the optimization algo-
rithm to converge. We propose that other algorithms like alternating least
square method with nonnegativity constraint and hierarchical ALS could be
investigated on this case for future work.

Table 1. Comparison between performance of different NMF algorithms, k=15

Algorithm RMSR Accuracy Entropy Purity CPU

time (sec)
SD 1983 0.9401 2.8834 0.4582 552
L-BFGS 2517 0.1469 2.8634 0.4496 602
MACB
(W-normalized) 0.3328 0.5530 1.8920 0.6514 2353

MACB
(H-normalized) 0.3328 0.7528 1.9191 0.6551 2353

Asl E. H., Zurada J. M.

101

Table 2. Comparison between performance of different NMF algorithms, k=20

Algorithm RMSR Accuracy Entropy Purity CPU

time (sec)
SD 53594 0.8961 2.8616 0.4527 535
L-BFGS 17.75 0.6274 2.8399 0.4496 605
Multiplicative
(W-normalized) 0.9776 0.5507 1.8094 0.6475 2513

Multiplicative
(H-normalized) 0.9776 0.5360 1.8567 0.6479 2513

Figure 4. Correntropy cost function minimization curve

0 5 10 15 20 25 30 35 40
-2

-1

0
x 108 Correntropy cost function minimization, k=15

D
(A

|W
H

)

SD
L-BFGS
MACB

0 5 10 15 20 25 30 35 40
-2

-1

0
x 108 k=20

iteration

D
(A

|W
H

)

Multiplicative Algorithm For ...

102

Figure 5. History of norm of cost function’sgradient

6 Conclusion

In this paper, a multiplicative algorithm for NMF based on correntropy
cost function is developed. Its performance was tested on the Reuters Docu-
ment Corpus for document clustering. The clustering result is also compared
to gradient descent algorithm using SD and L-BFGS algorithms using com-
mon clustering evaluation measures. The minimization curve and curve of
gradient’s norm of cost function are also investigated. The result proves that
MACB algorithm gives better clustering performance in terms of Entropy and
Purity and also faster convergence than other two methods. However, it shows
that by increasing the number of NMF clusters (value), gradient curve of
cost function does not converge appropriately. For future work, we propose
that other minimization algorithms like ALS, ANLS, and HALS could be
used for improving this problem.

0 10 20 30 40 50 60 70 80 90 100
0

5

x 104 norm of gradient of cost function, k=20

0 10 20 30 40 50 60 70 80 90 100
0

5000
10000
15000

k=30

0 10 20 30 40 50 60 70 80 90 100
0

1000
2000

k=40

0 10 20 30 40 50 60 70 80 90 100
0

1000
2000

k=48

iteration

Asl E. H., Zurada J. M.

103

References

1. Lee D.D.,Seung H.S., 1999,Learning the parts of objects by non-negative matrix
factorization, Nature, 401, 6755, pp. 788-791.

2. Seung D.,Lee L., 2001,Algorithms for non-negative matrix factorization, Advances
in neural information processing systems, 13, pp. 556-562.

3. Hoyer P.O., 2002, Non-negative sparse coding, Proc. of 12th IEEE Workshop on
Neural Networks for Signal Processing, pp. 557-565.

4. Xu W., Liu X., Gong Y., 2003, Document clustering based on non-negative matrix
factorization, Proc. of the 26th Annual Int. ACM SIGIR Conf. on Research and de-
velopment in informaion retrieval, pp. 267-273.

5. Hoyer P.O., 2004,Non-negative matrix factorization with sparseness con-
straints, The Journal of Machine Learning Research, 5, pp. 1457-1469.

6. Pauca V.P., Shahnaz F., Berry M.W., PlemmonsR.J., 2004,Text mining using non-
negative matrix factorizations, Proc. SIAM Int. Conf. on Data Mining, Orlando FL,
pp. 22-24.

7. Sra S., DhillonI.S., 2005, Generalized nonnegative matrix approximations with
Bregman divergences, Advances in neural information processing systems, pp. 283-
290.

8. Tan P.N., Steinbach M., Kumar V., 2006,Introduction to Data Mining, Pearson Ad-
dison Wesley.

9. Shahnaz F., Berry M.W., Pauca V.P., PlemmonsR.J., 2006, Document clustering
using nonnegative matrix factorization, Information Processing & Management, 42,
2, pp. 373-386.

10. Liu W., PokharelP.P., Principe J.C., 2006,Correntropy: A localized similarity meas-
ure, Int. Joint Conf. on Neural Networks, pp. 4919-4924.

11. Zdunek R., Cichocki A., 2006,Non-negative matrix factorization with quasi-Newton
optimization, Int. Conf. on Artificial Intelligence and Soft Computing, Springer Ber-
lin Heidelberg, 4029, pp. 870-879.

12. Berry M.W., Browne M., LangvilleA.N., Pauca V.P., PlemmonsR.J., 2007, Algo-
rithms and applications for approximate nonnegative matrix factoriza-
tion, Computational Statistics & Data Analysis, 52, 1, pp. 155-173.

13. KompassR., 2007,A generalized divergence measure for nonnegative matrix factori-
zation, Neural computation, 19, 3, pp. 780-791.

14. Lin C.J., 2007, Projected gradient methods for nonnegative matrix factorization,
Neural computation, 19, 10, pp. 2756-2779.

15. Liu W., PokharelP.P., Príncipe J.C., 2007, Correntropy: properties and applications
in non-Gaussian signal processing, IEEE Trans. on Signal Processing, 55, 11, pp.
5286-5298.

16. Ding C., Li T., Peng W., Park H., 2006, Orthogonal nonnegative matrix t-
factorizations for clustering, Proc. of the 12th ACM SIGKDD Int. Conf. on Know-
ledge discovery and data mining, ACM, pp. 126-135.

17. Kim H.,Park H., 2008,Nonnegative matrix factorization based on alternating non-
negativity constrained least squares and active set method, SIAM Journal on Matrix
Analysis and Applications, 30, 2, pp. 713-730.

18. Matlab Software by Mark Schmidt, www.di.ens.fr/~mschmidt/Software/minConf.html

Multiplicative Algorithm For ...

102

Figure 5. History of norm of cost function’sgradient

6 Conclusion

In this paper, a multiplicative algorithm for NMF based on correntropy
cost function is developed. Its performance was tested on the Reuters Docu-
ment Corpus for document clustering. The clustering result is also compared
to gradient descent algorithm using SD and L-BFGS algorithms using com-
mon clustering evaluation measures. The minimization curve and curve of
gradient’s norm of cost function are also investigated. The result proves that
MACB algorithm gives better clustering performance in terms of Entropy and
Purity and also faster convergence than other two methods. However, it shows
that by increasing the number of NMF clusters (value), gradient curve of
cost function does not converge appropriately. For future work, we propose
that other minimization algorithms like ALS, ANLS, and HALS could be
used for improving this problem.

0 10 20 30 40 50 60 70 80 90 100
0

5

x 104 norm of gradient of cost function, k=20

0 10 20 30 40 50 60 70 80 90 100
0

5000
10000
15000

k=30

0 10 20 30 40 50 60 70 80 90 100
0

1000
2000

k=40

0 10 20 30 40 50 60 70 80 90 100
0

1000
2000

k=48

iteration

Asl E. H., Zurada J. M.

103

References

1. Lee D.D.,Seung H.S., 1999,Learning the parts of objects by non-negative matrix
factorization, Nature, 401, 6755, pp. 788-791.

2. Seung D.,Lee L., 2001,Algorithms for non-negative matrix factorization, Advances
in neural information processing systems, 13, pp. 556-562.

3. Hoyer P.O., 2002, Non-negative sparse coding, Proc. of 12th IEEE Workshop on
Neural Networks for Signal Processing, pp. 557-565.

4. Xu W., Liu X., Gong Y., 2003, Document clustering based on non-negative matrix
factorization, Proc. of the 26th Annual Int. ACM SIGIR Conf. on Research and de-
velopment in informaion retrieval, pp. 267-273.

5. Hoyer P.O., 2004,Non-negative matrix factorization with sparseness con-
straints, The Journal of Machine Learning Research, 5, pp. 1457-1469.

6. Pauca V.P., Shahnaz F., Berry M.W., PlemmonsR.J., 2004,Text mining using non-
negative matrix factorizations, Proc. SIAM Int. Conf. on Data Mining, Orlando FL,
pp. 22-24.

7. Sra S., DhillonI.S., 2005, Generalized nonnegative matrix approximations with
Bregman divergences, Advances in neural information processing systems, pp. 283-
290.

8. Tan P.N., Steinbach M., Kumar V., 2006,Introduction to Data Mining, Pearson Ad-
dison Wesley.

9. Shahnaz F., Berry M.W., Pauca V.P., PlemmonsR.J., 2006, Document clustering
using nonnegative matrix factorization, Information Processing & Management, 42,
2, pp. 373-386.

10. Liu W., PokharelP.P., Principe J.C., 2006,Correntropy: A localized similarity meas-
ure, Int. Joint Conf. on Neural Networks, pp. 4919-4924.

11. Zdunek R., Cichocki A., 2006,Non-negative matrix factorization with quasi-Newton
optimization, Int. Conf. on Artificial Intelligence and Soft Computing, Springer Ber-
lin Heidelberg, 4029, pp. 870-879.

12. Berry M.W., Browne M., LangvilleA.N., Pauca V.P., PlemmonsR.J., 2007, Algo-
rithms and applications for approximate nonnegative matrix factoriza-
tion, Computational Statistics & Data Analysis, 52, 1, pp. 155-173.

13. KompassR., 2007,A generalized divergence measure for nonnegative matrix factori-
zation, Neural computation, 19, 3, pp. 780-791.

14. Lin C.J., 2007, Projected gradient methods for nonnegative matrix factorization,
Neural computation, 19, 10, pp. 2756-2779.

15. Liu W., PokharelP.P., Príncipe J.C., 2007, Correntropy: properties and applications
in non-Gaussian signal processing, IEEE Trans. on Signal Processing, 55, 11, pp.
5286-5298.

16. Ding C., Li T., Peng W., Park H., 2006, Orthogonal nonnegative matrix t-
factorizations for clustering, Proc. of the 12th ACM SIGKDD Int. Conf. on Know-
ledge discovery and data mining, ACM, pp. 126-135.

17. Kim H.,Park H., 2008,Nonnegative matrix factorization based on alternating non-
negativity constrained least squares and active set method, SIAM Journal on Matrix
Analysis and Applications, 30, 2, pp. 713-730.

18. Matlab Software by Mark Schmidt, www.di.ens.fr/~mschmidt/Software/minConf.html

Multiplicative Algorithm For ...

104

19. Cichocki A.,Anh-HuyP., 2009, Fast local algorithms for large scale nonnegative
matrix and tensor factorizations, IEICE Trans. on fundamentals of electronics,
communications and computer sciences,92, 3, pp. 708-721.

20. Kim J.,Park H., 2011, Fast nonnegative matrix factorization: An active-set-like me-
thod and comparisons, SIAM Journal on Scientific Computing, 33, 6, pp. 3261-
3281.

21. FévotteC., BertinN., DurrieuJ.L., 2011,Nonnegative matrix factorization with the
itakura-saito divergence: With application to music analysis, Neural computa-
tion, 21, 3, pp. 793-830.

22. FévotteC., IdierJ., 2011, Algorithms for nonnegative matrix factorization with the β-
divergence, Neural Computation, 23, 9, pp. 2421-2456.

23. He R., Zheng W.S., Hu B.G., 2011, Maximum correntropy criterion for robust face
recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence, 33, 8, pp.
1561-1576.

24. Ensari T., Chorowski J., Zurada J.M., 2012, Correntropy-Based document clustering
via nonnegative matrix factorization, Artificial Neural Networks and Machine
Learning–ICANN 2012, Springer Berlin Heidelberg, pp. 347-354.

25. Ensari T., ChorowskiJ., Zurada J.M., 2012,Occluded Face Recognition Using Cor-
rentropy-Based Nonnegative Matrix Factorization, 11th International Conference
on Machine Learning and Applications (ICMLA), 1, pp. 606-609.

26. Du L., Li X., Shen Y.D., 2012, Robust Nonnegative Matrix Factorization via Half-
Quadratic Minimization, IEEE 12th International Conference on Data Mining
(ICDM), pp. 201-210.

105

COMPUTER MODELING OF SUPERCAPACITOR
 WITH COLE-COLE RELAXATION MODEL

Marek Orzyłowski1, Mirosław Lewandowski2

IT Institute, University of Social Sciences
9 Sienkiewicza St., 90-113 Łódź, Poland

marek.orzylowski@gmail.com
2 Department of Electrical Engineering

Warsaw University of Technology
miroslaw.lewandowski@ee.pw.edu.pl

Abstract
Electric energy stored insupercapacitors is associated with ion movement
between the porous electrodes . This phenomenon can be described by
dielectric relaxation model. Cole-Davidson relaxation model application
reported in publications is difficult to use for control purposes. In the paper for
impedance of the supercapacitors description Cole-Cole relaxation model is
applied. For impedance parameters identification Nedler-Mead simplex method
is used. Supercapacitor impedance model simplification based on physical
properties is presented. Such model can be easy used for calculations in Matlab
environment with FOTF toolbox designed to fractional calculus. The example
of modeling of dynamic system with supercapacitor impedance model is
described. The effects of the simulation show that fractional model of
superapacitors is important tool for exact description of its dynamics.

Key words: Supercapacitor modeling, Cole-Cole relaxation model, fractional
calculus, control systems

1 Introduction

Supercapacitors are electronic elements having the properties between
electrolytic capacitors and accumulators. Capacitance of the supercapacitors
reaches several thousands of farads. They can reach energy and power densi-
ties of more than 10 Wh/kg and 10 kW/kg respectively. The possibility of
large electric charge storage is obtained due to porous electrodes made of
active carbon, graphene, carbon nanotubes or aerogel. Supercapacitors are
used in many applications: for protection of computers from input power in-

Multiplicative Algorithm For ...

104

19. Cichocki A.,Anh-HuyP., 2009, Fast local algorithms for large scale nonnegative
matrix and tensor factorizations, IEICE Trans. on fundamentals of electronics,
communications and computer sciences,92, 3, pp. 708-721.

20. Kim J.,Park H., 2011, Fast nonnegative matrix factorization: An active-set-like me-
thod and comparisons, SIAM Journal on Scientific Computing, 33, 6, pp. 3261-
3281.

21. FévotteC., BertinN., DurrieuJ.L., 2011,Nonnegative matrix factorization with the
itakura-saito divergence: With application to music analysis, Neural computa-
tion, 21, 3, pp. 793-830.

22. FévotteC., IdierJ., 2011, Algorithms for nonnegative matrix factorization with the β-
divergence, Neural Computation, 23, 9, pp. 2421-2456.

23. He R., Zheng W.S., Hu B.G., 2011, Maximum correntropy criterion for robust face
recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence, 33, 8, pp.
1561-1576.

24. Ensari T., Chorowski J., Zurada J.M., 2012, Correntropy-Based document clustering
via nonnegative matrix factorization, Artificial Neural Networks and Machine
Learning–ICANN 2012, Springer Berlin Heidelberg, pp. 347-354.

25. Ensari T., ChorowskiJ., Zurada J.M., 2012,Occluded Face Recognition Using Cor-
rentropy-Based Nonnegative Matrix Factorization, 11th International Conference
on Machine Learning and Applications (ICMLA), 1, pp. 606-609.

26. Du L., Li X., Shen Y.D., 2012, Robust Nonnegative Matrix Factorization via Half-
Quadratic Minimization, IEEE 12th International Conference on Data Mining
(ICDM), pp. 201-210.

105

COMPUTER MODELING OF SUPERCAPACITOR
 WITH COLE-COLE RELAXATION MODEL

Marek Orzyłowski1, Mirosław Lewandowski2

IT Institute, University of Social Sciences
9 Sienkiewicza St., 90-113 Łódź, Poland

marek.orzylowski@gmail.com
2 Department of Electrical Engineering

Warsaw University of Technology
miroslaw.lewandowski@ee.pw.edu.pl

Abstract
Electric energy stored insupercapacitors is associated with ion movement
between the porous electrodes . This phenomenon can be described by
dielectric relaxation model. Cole-Davidson relaxation model application
reported in publications is difficult to use for control purposes. In the paper for
impedance of the supercapacitors description Cole-Cole relaxation model is
applied. For impedance parameters identification Nedler-Mead simplex method
is used. Supercapacitor impedance model simplification based on physical
properties is presented. Such model can be easy used for calculations in Matlab
environment with FOTF toolbox designed to fractional calculus. The example
of modeling of dynamic system with supercapacitor impedance model is
described. The effects of the simulation show that fractional model of
superapacitors is important tool for exact description of its dynamics.

Key words: Supercapacitor modeling, Cole-Cole relaxation model, fractional
calculus, control systems

1 Introduction

Supercapacitors are electronic elements having the properties between
electrolytic capacitors and accumulators. Capacitance of the supercapacitors
reaches several thousands of farads. They can reach energy and power densi-
ties of more than 10 Wh/kg and 10 kW/kg respectively. The possibility of
large electric charge storage is obtained due to porous electrodes made of
active carbon, graphene, carbon nanotubes or aerogel. Supercapacitors are
used in many applications: for protection of computers from input power in-

Computer Modeling of Supercapacitor ...

106

terruptions, as power supply of robots, toys, electric toothbrushes etc. Recent-
ly they are increasingly used in electric vehicles for braking energy storage
and its delivery during acceleration.

Electric energy stored insupercapacitors is associated with ion movement
between the porous electrodes of large surface and relatively large resistance.
This phenomenon causes that the typical equivalent models of capacitors that
contain one or two lumped parameter RC circuits are not sufficient for accu-
rate representation of dynamic properties of the supercapacitors. In the result,
for this purpose, the complex equivalent schemes with many connected RC
elements [1] or fractional differential equations [2, 3] are used.

In the paper, for impedance of the supercapacitors description fractional
order calculus and model of dielectric relaxation are applied. Dielectric relax-
ation can be described by few models [4]. It was reported that Cole-Davidson
model application is well for exact modeling of the supercapacitors [4, 5, 6]
but its application in automation is difficult. The paper presents Cole-Cole
model application for such purposes.

2 Cole-Cole and Cole-Davidson models of supercapacitor
impedance

Classic Debye model of ideal dielectric relaxation is in practice replaced
by its empiric modifications [4]. Such modification is presented by Havriliak-
Negami model of complex dielectric constant, expressed as equation

���(��) � �� + �����
���(���)���, � � � � � 0<� � �, (1)

where
ε∞ – infinite frequency dielectric constant,
εs – static frequency dielectric constant,
T–characteristicrelaxation time of the medium.

For γ=1 equation (1) becomes Cole-Cole equation

���(��) � �� + �����
��(���)�, where � � � � � (2)

and for δ=1 it becomes Cole-Davidson equation

���(��) � �� + �����
(�����)�, where � � � � � (3)

Parameters δ and γ are determined experimentally.

Orzyłowski M., Lewandowski M.

107

Figure1. Equivalent circuit of supercapacitor

The expression of the real supercapacitor impedance can be based on one
of above equations of complex dielectric constants but it should also contain
parallel leakage resistance Ru and serial equivalent resistance Rc (Figure 1)
[5, 6]. As a result supercapacitor impedance is given by equation

Z(��) = R� +
�� 1

���(��)
�� + 1

���(��)
 (4)

where capacitance C(jω) is proportional to complex dielectric constant (1).
Additionally, for the supercapacitors, can by assumed that

ε� ≪ ε� (5)

Let us replace Fourier transform with Laplace transform. Impedance of su-
percapacitor Z(s) can be treated as fractional transfer function G(s) with cur-
rent input signal transform I(s) and voltage output signal transform V(s). On
the basis of Cole-Davidson model (3), equations (4) and (5) one obtains the
expression of supercapacitor impedance [5, 6]

R

Ru C(jω)=C0ε(jω
)

Computer Modeling of Supercapacitor ...

106

terruptions, as power supply of robots, toys, electric toothbrushes etc. Recent-
ly they are increasingly used in electric vehicles for braking energy storage
and its delivery during acceleration.

Electric energy stored insupercapacitors is associated with ion movement
between the porous electrodes of large surface and relatively large resistance.
This phenomenon causes that the typical equivalent models of capacitors that
contain one or two lumped parameter RC circuits are not sufficient for accu-
rate representation of dynamic properties of the supercapacitors. In the result,
for this purpose, the complex equivalent schemes with many connected RC
elements [1] or fractional differential equations [2, 3] are used.

In the paper, for impedance of the supercapacitors description fractional
order calculus and model of dielectric relaxation are applied. Dielectric relax-
ation can be described by few models [4]. It was reported that Cole-Davidson
model application is well for exact modeling of the supercapacitors [4, 5, 6]
but its application in automation is difficult. The paper presents Cole-Cole
model application for such purposes.

2 Cole-Cole and Cole-Davidson models of supercapacitor
impedance

Classic Debye model of ideal dielectric relaxation is in practice replaced
by its empiric modifications [4]. Such modification is presented by Havriliak-
Negami model of complex dielectric constant, expressed as equation

���(��) � �� + �����
���(���)���, � � � � � 0<� � �, (1)

where
ε∞ – infinite frequency dielectric constant,
εs – static frequency dielectric constant,
T–characteristicrelaxation time of the medium.

For γ=1 equation (1) becomes Cole-Cole equation

���(��) � �� + �����
��(���)�, where � � � � � (2)

and for δ=1 it becomes Cole-Davidson equation

���(��) � �� + �����
(�����)�, where � � � � � (3)

Parameters δ and γ are determined experimentally.

Orzyłowski M., Lewandowski M.

107

Figure1. Equivalent circuit of supercapacitor

The expression of the real supercapacitor impedance can be based on one
of above equations of complex dielectric constants but it should also contain
parallel leakage resistance Ru and serial equivalent resistance Rc (Figure 1)
[5, 6]. As a result supercapacitor impedance is given by equation

Z(��) = R� +
�� 1

���(��)
�� + 1

���(��)
 (4)

where capacitance C(jω) is proportional to complex dielectric constant (1).
Additionally, for the supercapacitors, can by assumed that

ε� ≪ ε� (5)

Let us replace Fourier transform with Laplace transform. Impedance of su-
percapacitor Z(s) can be treated as fractional transfer function G(s) with cur-
rent input signal transform I(s) and voltage output signal transform V(s). On
the basis of Cole-Davidson model (3), equations (4) and (5) one obtains the
expression of supercapacitor impedance [5, 6]

R

Ru C(jω)=C0ε(jω
)

Computer Modeling of Supercapacitor ...

108

���(s) =
V(s)
I(s) = Rc +

��
(1 + sT)�

��
�� +

(1 + sT)�
��

=
�1 + ��

��� (1 + ��)� + ����
1
�� (1 + ��)� + ��

 (6)

Transfer function is commonly in automation presented as [2, 3]

�(�) = ����� + �����+�+ ��������� + �����
���∝�+���∝� + �+ ��������� + ���∝� (7)

Such a form of fractional transfer function can be directly used for calcula-
tion e.g. applying numerical computing environment Matlab with FOTF tool-
box [7, 8] designed for fractional calculus.

Unfortunately equation (6) can’t be directly expressed in form (7) because
of presence binomial to a fractional power γ [6]. The same complications are
connected with Havriliak-Negami model.

To avoid that issue one can apply Cole-Cole model of dielectric relaxation
given by expression (2). Using the same transformation as for Cole-Davidson
model, one can obtain equation

���(s) =
�1 + ��

��� + �� �1 + ��
��� �

� + ����
1
�� + �� �

�

�� + ��
 (8)

Taking into consideration parameters of the supercapacitor equation (8)
can be simplified. At the beginning it is worth to notice that serial resistance
Rc is several order of magnitude lower than parallel leakage resistance Ru

��
�� ≪ 1 (9)

This inequality leads to expression

���(s) =
�1 + ��

��� + �� �1 + ��
��� �

� + ����
1
�� + �� �

�

�� + ��
≅ 1 + ���� + ����

1
�� + �� �

�

�� + ��
 (10)

Generally transfer function (10) can be written in form

Orzyłowski M., Lewandowski M.

109

���(s) =
1 � ���� � ����
1
�� � �� ���� � ��

= 1 � ���� � ���
�� � ���� � ��� (11)

which corresponds to (7).
Ruvalue can be determined from supercapacitor self-discharge curve. As a

result the value of a0 coefficient is known

�� =
1
�� (12)

Taking into account the value of a0 and the following equality

�� = �� (13)

it can be written that

�� =
��
�� = ���� (14)

Summarizing, one can find that omitting Rc for determination of model
(11) only 4 parameters should be identified:a2, b1, b2 and δ. This identification
can be based on the measurements of complex impedance values for the ap-
propriate frequency range.

Identification of model (11) parameters can be performed on basis of mi-

nimization of performance index

�� =
1
�������(���) � ��(���)�

���(���)�
�
2�

�=1
 (15)

where
GCC – transfer function (11),
Gp – measured frequency response of the supercapacitor,
ωi – frequency of measured point.

Chosen performance index corresponds to the variance of moduli of rela-
tive errors of the frequency response points, related to appropriate points of
approximation function (11). For minimization purpose Nelder-Mead simplex
method was used. This optimization problem is multi-modal so proper start
point should be chosen. Fortunately the coefficients in expression (11) can be
roughly estimated on the basis of estimation of supercapacitor physical para-
meters.

Computer Modeling of Supercapacitor ...

108

���(s) =
V(s)
I(s) = Rc +

��
(1 + sT)�

��
�� +

(1 + sT)�
��

=
�1 + ��

��� (1 + ��)� + ����
1
�� (1 + ��)� + ��

 (6)

Transfer function is commonly in automation presented as [2, 3]

�(�) = ����� + �����+�+ ��������� + �����
���∝�+���∝� + �+ ��������� + ���∝� (7)

Such a form of fractional transfer function can be directly used for calcula-
tion e.g. applying numerical computing environment Matlab with FOTF tool-
box [7, 8] designed for fractional calculus.

Unfortunately equation (6) can’t be directly expressed in form (7) because
of presence binomial to a fractional power γ [6]. The same complications are
connected with Havriliak-Negami model.

To avoid that issue one can apply Cole-Cole model of dielectric relaxation
given by expression (2). Using the same transformation as for Cole-Davidson
model, one can obtain equation

���(s) =
�1 + ��

��� + �� �1 + ��
��� �

� + ����
1
�� + �� �

�

�� + ��
 (8)

Taking into consideration parameters of the supercapacitor equation (8)
can be simplified. At the beginning it is worth to notice that serial resistance
Rc is several order of magnitude lower than parallel leakage resistance Ru

��
�� ≪ 1 (9)

This inequality leads to expression

���(s) =
�1 + ��

��� + �� �1 + ��
��� �

� + ����
1
�� + �� �

�

�� + ��
≅ 1 + ���� + ����

1
�� + �� �

�

�� + ��
 (10)

Generally transfer function (10) can be written in form

Orzyłowski M., Lewandowski M.

109

���(s) =
1 � ���� � ����
1
�� � �� ���� � ��

= 1 � ���� � ���
�� � ���� � ��� (11)

which corresponds to (7).
Ruvalue can be determined from supercapacitor self-discharge curve. As a

result the value of a0 coefficient is known

�� =
1
�� (12)

Taking into account the value of a0 and the following equality

�� = �� (13)

it can be written that

�� =
��
�� = ���� (14)

Summarizing, one can find that omitting Rc for determination of model
(11) only 4 parameters should be identified:a2, b1, b2 and δ. This identification
can be based on the measurements of complex impedance values for the ap-
propriate frequency range.

Identification of model (11) parameters can be performed on basis of mi-

nimization of performance index

�� =
1
�������(���) � ��(���)�

���(���)�
�
2�

�=1
 (15)

where
GCC – transfer function (11),
Gp – measured frequency response of the supercapacitor,
ωi – frequency of measured point.

Chosen performance index corresponds to the variance of moduli of rela-
tive errors of the frequency response points, related to appropriate points of
approximation function (11). For minimization purpose Nelder-Mead simplex
method was used. This optimization problem is multi-modal so proper start
point should be chosen. Fortunately the coefficients in expression (11) can be
roughly estimated on the basis of estimation of supercapacitor physical para-
meters.

Computer Modeling of Supercapacitor ...

110

Measured frequency responses of supercapacitors presented in the paper,
are based on data published in [5, 9, 10]. The example of transfer function
calculated for 2700 F supercapacitor using data [10] is

G��(s) =
1 + 0.869s�.��� + 0.632s

0.00200 + 0.00174s�.��� + 2020s (16)

The result of the approximation of the frequency response (16) is presented
in Figure 2. Another example is the impedance of the supercapacitorof
0.047 F capacitance [5]. Its transfer function is

G��(s) = 1000 1 + 2.44s�.��� + 1.65s
0.010 + 0.024s�.��� + 58.7s (17)

The frequency diagram of (17) is shown in Figure 3.
The basis for comparison of the accuracy of approximation for different

supercapacitors can be performance index Jf (15).The square root of Jf corres-
ponds to standard deviation of the error. For supercapacitors taken into con-
sideration standard deviation of error is equal a few percent.

Figure 2. Measured frequency response points (asterisks) and approximating func-
tion (16) for 2700 F supercpacitor

Orzyłowski M., Lewandowski M.

111

Figure 3. Measured frequency response points (asterisks) and approximating func-
tion (17) for 47 mF supercapacitor

3 Cole-Cole model simplification and time response

On the basis of the results of the impedance approximation of supercapaci-
tors of capacitance between 0.047 F and 2700 F it can be stated that for all
those examples model (11) can be simplified. The denominator of expression
(11) can be written as

 (18)

where

 (19a)

 (19b)

It was proved that the ratio of

Computer Modeling of Supercapacitor ...

110

Measured frequency responses of supercapacitors presented in the paper,
are based on data published in [5, 9, 10]. The example of transfer function
calculated for 2700 F supercapacitor using data [10] is

G��(s) =
1 + 0.869s�.��� + 0.632s

0.00200 + 0.00174s�.��� + 2020s (16)

The result of the approximation of the frequency response (16) is presented
in Figure 2. Another example is the impedance of the supercapacitorof
0.047 F capacitance [5]. Its transfer function is

G��(s) = 1000 1 + 2.44s�.��� + 1.65s
0.010 + 0.024s�.��� + 58.7s (17)

The frequency diagram of (17) is shown in Figure 3.
The basis for comparison of the accuracy of approximation for different

supercapacitors can be performance index Jf (15).The square root of Jf corres-
ponds to standard deviation of the error. For supercapacitors taken into con-
sideration standard deviation of error is equal a few percent.

Figure 2. Measured frequency response points (asterisks) and approximating func-
tion (16) for 2700 F supercpacitor

Orzyłowski M., Lewandowski M.

111

Figure 3. Measured frequency response points (asterisks) and approximating func-
tion (17) for 47 mF supercapacitor

3 Cole-Cole model simplification and time response

On the basis of the results of the impedance approximation of supercapaci-
tors of capacitance between 0.047 F and 2700 F it can be stated that for all
those examples model (11) can be simplified. The denominator of expression
(11) can be written as

 (18)

where

 (19a)

 (19b)

It was proved that the ratio of

Computer Modeling of Supercapacitor ...

112

�(�) = |�����(�)|
|����(�)| ≪ 1 (20)

which means that the term GCCd2 practically has no influence on frequency
response of the supercapacitor. In Figure 4 are shown graphs of S(ω) for vari-
ous supercapacitors which frequency responses are presented in [5, 10].

Figure 4. Frequency dependence of ratio S (18) for various supercapacitors

It can be mentioned that S(ω) strongly depends on exponent δ value. Typi-
cal value of δ for the capacitors is between 0.5 and 0.9. Graph of S(ω) for
0.6 F supercapacitor [10] is presented in Figure 5. Identified value of δ for this
supercapacitor is 0.82. Other plots were calculated for hypothetical cases with
lower values of δ.

Basing on current analysis one can determine the simpler model of the im-
pedance of the supercapacitor. Omitting term GCCd2 the simplified expression
is given as

���(s) =
1 � ���� � ���

�� � ��� (21)

0.33 F

0.1 F

0.047F

2700F

Orzyłowski M., Lewandowski M.

113

Figure 5. Ratio S(ω) for supercapacitor 0.6F

Consequently the impedance of e.g. 0.33 F supercapacitor [5] can be writ-
ten as

G��(s) =
1 + 13.5s�.��� + 0.632s
1.65e − 07 + 0.340s (22)

For the further analysis expression (21) can be decomposed into three sim-
ple fractions

���(�) =
1 + ���� + ���

�� + ��� = ����(�) + ����(�) + ����(�) (23)

where

����(�) = �� (24a)

����(�) =
��

1 + ���� (24b)

δ=0.75 (hypothecical)

δ=0.6 (hypothectical)

δ=0.82 (identified)

Computer Modeling of Supercapacitor ...

112

�(�) = |�����(�)|
|����(�)| ≪ 1 (20)

which means that the term GCCd2 practically has no influence on frequency
response of the supercapacitor. In Figure 4 are shown graphs of S(ω) for vari-
ous supercapacitors which frequency responses are presented in [5, 10].

Figure 4. Frequency dependence of ratio S (18) for various supercapacitors

It can be mentioned that S(ω) strongly depends on exponent δ value. Typi-
cal value of δ for the capacitors is between 0.5 and 0.9. Graph of S(ω) for
0.6 F supercapacitor [10] is presented in Figure 5. Identified value of δ for this
supercapacitor is 0.82. Other plots were calculated for hypothetical cases with
lower values of δ.

Basing on current analysis one can determine the simpler model of the im-
pedance of the supercapacitor. Omitting term GCCd2 the simplified expression
is given as

���(s) =
1 � ���� � ���

�� � ��� (21)

0.33 F

0.1 F

0.047F

2700F

Orzyłowski M., Lewandowski M.

113

Figure 5. Ratio S(ω) for supercapacitor 0.6F

Consequently the impedance of e.g. 0.33 F supercapacitor [5] can be writ-
ten as

G��(s) =
1 + 13.5s�.��� + 0.632s
1.65e − 07 + 0.340s (22)

For the further analysis expression (21) can be decomposed into three sim-
ple fractions

���(�) =
1 + ���� + ���

�� + ��� = ����(�) + ����(�) + ����(�) (23)

where

����(�) = �� (24a)

����(�) =
��

1 + ���� (24b)

δ=0.75 (hypothecical)

δ=0.6 (hypothectical)

δ=0.82 (identified)

Computer Modeling of Supercapacitor ...

114

����(�) =
������
1 + ���� (24c)

In Figure 6 are shown moduli of frequency responses of each term of (23)
and modulus of Gcc. The terms are asymptotes of Gcc(s). The slope of loga-
rithmic plots for Gcc2 is -20 dB per decade of frequency and the slope of Gcc3
is -20*(1-δ) dB per decade of frequency.

Figure6. Moduli of terms of equation (22) and modulus Gcc for supercapacitor
0.33 F

Voltage response of impedance (23) to current step is a sum of responses

of mentioned 3 terms: proportional step, exponential response of large time
constant RuC, and response dependent on fractional order term. The voltage
response for I0 magnitude of current step can be written as

���(�) = ℒ−1 ��0� ��� +
��

1 + ����
+ ������
1 + ����

�� = ���1(�) + ����(�) + ����(�) (25)

where

Gc3

Gcc

Gcc1

Gc2

Orzyłowski M., Lewandowski M.

115

����(�) = ℒ�� ���� ��� = ���� (26a)

����(�) = ℒ�� ���� �
��

� � ������ = ���� �� � ��� � �������
(26b)

����(�) = �ℒ�� ���� �
������
� � �������

= ��(�� ��� �� �� �)
(26c)

For time t<<RuC the two first terms causes step summed with quasi-linear
increase. The third term is responsible for initial non-linearity – Figure 7.

Figure 7. Current step response of supercapacitor of 0.33 F

4 Cole-Cole model application in control systems analysis

It has been mentioned that for fractional calculus the numerical computing
environment Matlab with FOTF toolbox [7] can be applied. Matlab environ-
ment is well known and widely used tool for modeling and simulation of

v
cc2

(t)

v
cc3

(t)

v
cc

(t)

vcc1(t)

Computer Modeling of Supercapacitor ...

114

����(�) =
������
1 + ���� (24c)

In Figure 6 are shown moduli of frequency responses of each term of (23)
and modulus of Gcc. The terms are asymptotes of Gcc(s). The slope of loga-
rithmic plots for Gcc2 is -20 dB per decade of frequency and the slope of Gcc3
is -20*(1-δ) dB per decade of frequency.

Figure6. Moduli of terms of equation (22) and modulus Gcc for supercapacitor
0.33 F

Voltage response of impedance (23) to current step is a sum of responses

of mentioned 3 terms: proportional step, exponential response of large time
constant RuC, and response dependent on fractional order term. The voltage
response for I0 magnitude of current step can be written as

���(�) = ℒ−1 ��0� ��� +
��

1 + ����
+ ������
1 + ����

�� = ���1(�) + ����(�) + ����(�) (25)

where

Gc3

Gcc

Gcc1

Gc2

Orzyłowski M., Lewandowski M.

115

����(�) = ℒ�� ���� ��� = ���� (26a)

����(�) = ℒ�� ���� �
��

� � ������ = ���� �� � ��� � �������
(26b)

����(�) = �ℒ�� ���� �
������
� � �������

= ��(�� ��� �� �� �)
(26c)

For time t<<RuC the two first terms causes step summed with quasi-linear
increase. The third term is responsible for initial non-linearity – Figure 7.

Figure 7. Current step response of supercapacitor of 0.33 F

4 Cole-Cole model application in control systems analysis

It has been mentioned that for fractional calculus the numerical computing
environment Matlab with FOTF toolbox [7] can be applied. Matlab environ-
ment is well known and widely used tool for modeling and simulation of

v
cc2

(t)

v
cc3

(t)

v
cc

(t)

vcc1(t)

Computer Modeling of Supercapacitor ...

116

physical systems. Using Control Toolbox one can study and design control
systems. FOTF toolbox enables fractional calculus providing functions for:
− fractional transfer function object creation,
− presentation of Bode and Nyquist plots of this transfer function,
− calculation of time response on basis of transfer function and time input

signal,
− addition, subtraction, multiplication and inversion of created models,
− feedback connection of such models,
− determination whether system is stable.

Presented example of FOTF toolbox application is design of resistor
/capacitor voltage divider of inertial properties consisting of resistor R0=5kΩ
and supercapacitor of C=0.1F (Figure 8).

Figure 8. Scheme of the voltage divider

This divider shown in Figure 8 is described by equation

��(�) =
���(�)

�� + ���(�) = ���(�)��� + ���(�)��� (27)

where

G��(s) =
1 + 4.67s�.��� + 5.01s

5e − 08 + 0.1s (28)

One can specify FOFT object for (28) and enter it into MATLAB. Vectors
formulated according to form (7) are input parameters of such an object. They

R
c

R
u
 C(jω)=C

0
ε(jω)

Supercapacitor
Vin Vout

R

Orzyłowski M., Lewandowski M.

117

contain coefficients ai, bi and exponents of s defined in (21). For (28) these
vectors (in the reverse order) are equal

�� = [�� ��] = [0.1 5� − 08] (29a)

�� = [1 0] (29b)

�� = [�� �� 1] = [5.01 4.67 1] (29c)

�� = [1 � 0] = [1 0.705 0] (29d)

In the next step the FOFT objects of (28) and Ro should be created
Gcc=fotf(wa,pa,wb,pb);

R0=fotf([[1],[0],[5000],[0]);

Then according to (26) these objects should be added
G1=plus(R0,Gcc);

inverted
G1i=inv(G1);

and multiplied
Gd=mtimes(Gcc,G1i);

The calculated transfer function of considered divider is equal to

��(�) =
5� − 08 + �.�4� − 07��.��� + 0.1� + 0.470��.��� + 0.504��
5� − 08 + �.�4� − 07��.��� + 0.1� + 0.470��.��� + 51�� (30)

This transfer function has been compared with transfer function of di-
vider with capacitor in which the relaxation phenomenon can be neglected.
Impedance of such idealized capacitor of capacitance Ci=0.1 F is similar to
(10)

��(�) = �� +
�� 1

���
��� 1

���
≅ 1 + �����

1
�� + ���

= 1 + 5s
5e − 08 + 0.1s (31)

Transfer function of the divider with this capacitor is

���(�) =
��

�� + ��(�) =
��(1 + �����)

��(1 + �����) + ��(1 + �����) =
1 + 5�
1 + 505� (32)

Computer Modeling of Supercapacitor ...

116

physical systems. Using Control Toolbox one can study and design control
systems. FOTF toolbox enables fractional calculus providing functions for:
− fractional transfer function object creation,
− presentation of Bode and Nyquist plots of this transfer function,
− calculation of time response on basis of transfer function and time input

signal,
− addition, subtraction, multiplication and inversion of created models,
− feedback connection of such models,
− determination whether system is stable.

Presented example of FOTF toolbox application is design of resistor
/capacitor voltage divider of inertial properties consisting of resistor R0=5kΩ
and supercapacitor of C=0.1F (Figure 8).

Figure 8. Scheme of the voltage divider

This divider shown in Figure 8 is described by equation

��(�) =
���(�)

�� + ���(�) = ���(�)��� + ���(�)��� (27)

where

G��(s) =
1 + 4.67s�.��� + 5.01s

5e − 08 + 0.1s (28)

One can specify FOFT object for (28) and enter it into MATLAB. Vectors
formulated according to form (7) are input parameters of such an object. They

R
c

R
u
 C(jω)=C

0
ε(jω)

Supercapacitor
Vin Vout

R

Orzyłowski M., Lewandowski M.

117

contain coefficients ai, bi and exponents of s defined in (21). For (28) these
vectors (in the reverse order) are equal

�� = [�� ��] = [0.1 5� − 08] (29a)

�� = [1 0] (29b)

�� = [�� �� 1] = [5.01 4.67 1] (29c)

�� = [1 � 0] = [1 0.705 0] (29d)

In the next step the FOFT objects of (28) and Ro should be created
Gcc=fotf(wa,pa,wb,pb);

R0=fotf([[1],[0],[5000],[0]);

Then according to (26) these objects should be added
G1=plus(R0,Gcc);

inverted
G1i=inv(G1);

and multiplied
Gd=mtimes(Gcc,G1i);

The calculated transfer function of considered divider is equal to

��(�) =
5� − 08 + �.�4� − 07��.��� + 0.1� + 0.470��.��� + 0.504��
5� − 08 + �.�4� − 07��.��� + 0.1� + 0.470��.��� + 51�� (30)

This transfer function has been compared with transfer function of di-
vider with capacitor in which the relaxation phenomenon can be neglected.
Impedance of such idealized capacitor of capacitance Ci=0.1 F is similar to
(10)

��(�) = �� +
�� 1

���
��� 1

���
≅ 1 + �����

1
�� + ���

= 1 + 5s
5e − 08 + 0.1s (31)

Transfer function of the divider with this capacitor is

���(�) =
��

�� + ��(�) =
��(1 + �����)

��(1 + �����) + ��(1 + �����) =
1 + 5�
1 + 505� (32)

Computer Modeling of Supercapacitor ...

118

Bode plots of Gd(s) and Gi(s) are compared in Figure 9. The influence of re-
laxation phenomenon on frequency response is distinct for higher frequencies.

Figure 9. Bode plots of transfer functions of the dividers with supercapacitor and

idealized capacitor

idealizedcapacitorr

supercapacitorr

supercapacitorr

idealizedcapacitorr

Orzyłowski M., Lewandowski M.

119

Figure 10. Step responses of the dividers

Figure 11. Pulse responses of the dividers

idealizedcapacitorr

supercapacitorr

supercapacitorr

idealizedcapacitorr

Computer Modeling of Supercapacitor ...

118

Bode plots of Gd(s) and Gi(s) are compared in Figure 9. The influence of re-
laxation phenomenon on frequency response is distinct for higher frequencies.

Figure 9. Bode plots of transfer functions of the dividers with supercapacitor and

idealized capacitor

idealizedcapacitorr

supercapacitorr

supercapacitorr

idealizedcapacitorr

Orzyłowski M., Lewandowski M.

119

Figure 10. Step responses of the dividers

Figure 11. Pulse responses of the dividers

idealizedcapacitorr

supercapacitorr

supercapacitorr

idealizedcapacitorr

Computer Modeling of Supercapacitor ...

120

The step responses of both dividers are presented in Figure 10. They are

convergent with the time rise. The essential difference at the beginning of the
time responses is presented by the plots of time responses to short input pulse
of 0.2 s duration (Figure 11).

Taking into account the difference between time and frequency responses
of models of fractional and lumped parameters one can state that the fractional
model of superapacitors can be important for exact description of its dynam-
ics.

5 Conclusions

The technical literature mostly concerns the supercapacitor models with
Cole-Davidson relaxation model application. In the paper the computer model
of supercapacitor impedance based on Cole-Cole relaxation modelis pre-
sented. Consequently the impedance has polynomial form commonly used in
automation. It enables the analysis of various control systems containing su-
percapacitors. For this purpose Matlab environment with FOTF toolbox de-
signed to fractional calculus can be applied.

In the studied examples Cole-Davidson model in general is a bit more
accurate for frequency and time responses of real supercapacitor approxima-
tion but advantages connected with easy analysis and simulation of control
systems is essential. The comparison of practical effects of both relaxation
models application in control systems analysis will be subject of the next pub-
lications.

In general it can be stated that the fractional model of superapacitors
can be important tool for exact description of its dynamics.

References

1. Shi L., Crow M. L., Comparison of Ultracapacitor Electric Circuit,Power and
Energy Society General Meeting - Conversion and Delivery of Electrical Energy
in the 21st Century, IEEEXplore,2008

2. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.,Fractional-
Order Systems and Controls: Fundamentals and Applications, Springer, 2010

3. Ostalczyk P., Zarys rachunku różniczkowo-całkowego ułamkowych rzędów,
Teoria i zastosowania w automatyce, Wydawnictwo Politechniki Łódzkiej, 2008

4. Déjardin, J-L., Jadzyn J., Determination of the nonlinear dielectric increment in
the Cole-Davidson model, The Journal of Chemical Physics 125, 114503, 2006.

5. Dzieliński A., Sierociuk D., Sarwas G., Some Applications of Fractional Order
Calculus, Automatics, Bulletin of the Polish Academy of Sciences, Technical
Sciences, vol. 58, No. 4, 2010

Orzyłowski M., Lewandowski M.

121

6. Dzieliński A., Sierociuk D., Sarwas G., Time domain validation of ultracapaci-
tor fractional order model,49th IEEE Conference on Decision and Control, De-
cember 15-17, 2010, Hilton Atlanta Hotel, Atlanta, GA, USA

7. YangQuan Chen, Ivo Petras and DingyuXue, Fractional Order Control – A
Tutorial, 2009 American Control Conference Hyatt Regency Riverfront, St.
Louis, MO, USA, June 10-12, 2009

8. Matsu R., Matlab Toolboxes for Fractional Order Control: an Overview, Annals
of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Sympo-
sium, Volume 22, No. 1, 2011

9. HS206 supercapacitor Datasheet, Rev 1.1, CAP-XX, 2008
10. Ultracapacitors Data Sheets and technical information for PC2500TM, Max-

well

Computer Modeling of Supercapacitor ...

120

The step responses of both dividers are presented in Figure 10. They are

convergent with the time rise. The essential difference at the beginning of the
time responses is presented by the plots of time responses to short input pulse
of 0.2 s duration (Figure 11).

Taking into account the difference between time and frequency responses
of models of fractional and lumped parameters one can state that the fractional
model of superapacitors can be important for exact description of its dynam-
ics.

5 Conclusions

The technical literature mostly concerns the supercapacitor models with
Cole-Davidson relaxation model application. In the paper the computer model
of supercapacitor impedance based on Cole-Cole relaxation modelis pre-
sented. Consequently the impedance has polynomial form commonly used in
automation. It enables the analysis of various control systems containing su-
percapacitors. For this purpose Matlab environment with FOTF toolbox de-
signed to fractional calculus can be applied.

In the studied examples Cole-Davidson model in general is a bit more
accurate for frequency and time responses of real supercapacitor approxima-
tion but advantages connected with easy analysis and simulation of control
systems is essential. The comparison of practical effects of both relaxation
models application in control systems analysis will be subject of the next pub-
lications.

In general it can be stated that the fractional model of superapacitors
can be important tool for exact description of its dynamics.

References

1. Shi L., Crow M. L., Comparison of Ultracapacitor Electric Circuit,Power and
Energy Society General Meeting - Conversion and Delivery of Electrical Energy
in the 21st Century, IEEEXplore,2008

2. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.,Fractional-
Order Systems and Controls: Fundamentals and Applications, Springer, 2010

3. Ostalczyk P., Zarys rachunku różniczkowo-całkowego ułamkowych rzędów,
Teoria i zastosowania w automatyce, Wydawnictwo Politechniki Łódzkiej, 2008

4. Déjardin, J-L., Jadzyn J., Determination of the nonlinear dielectric increment in
the Cole-Davidson model, The Journal of Chemical Physics 125, 114503, 2006.

5. Dzieliński A., Sierociuk D., Sarwas G., Some Applications of Fractional Order
Calculus, Automatics, Bulletin of the Polish Academy of Sciences, Technical
Sciences, vol. 58, No. 4, 2010

Orzyłowski M., Lewandowski M.

121

6. Dzieliński A., Sierociuk D., Sarwas G., Time domain validation of ultracapaci-
tor fractional order model,49th IEEE Conference on Decision and Control, De-
cember 15-17, 2010, Hilton Atlanta Hotel, Atlanta, GA, USA

7. YangQuan Chen, Ivo Petras and DingyuXue, Fractional Order Control – A
Tutorial, 2009 American Control Conference Hyatt Regency Riverfront, St.
Louis, MO, USA, June 10-12, 2009

8. Matsu R., Matlab Toolboxes for Fractional Order Control: an Overview, Annals
of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Sympo-
sium, Volume 22, No. 1, 2011

9. HS206 supercapacitor Datasheet, Rev 1.1, CAP-XX, 2008
10. Ultracapacitors Data Sheets and technical information for PC2500TM, Max-

well

123

IMPLEMENTATION OF THE WAVELET TRANSFORM
WITH SSE EXTENSIONS

Tadeusz Łyszkowski1, Tomasz Wiechno2, Mykhaylo Yatsymirskyy2
1Higher Vocational State School in Wloclawek

tadeusz.lyszkowski@pwsz.wloclawek.pl
2Institute of Information Technology, Lodz University of Technology

tomasz.wiechn@p.lodz.pl, mykhaylo.yatsymirskyy@p.lodz.pl

Abstract
It has been shown that application of assembly implementation of Streaming
SIMD Extensions (SSE) shortens the time needed to apply filtration in two-
channel filter bank by tenfold, comparing to non-optimized version, written in
Microsoft Visual C++ 2010 Express, without assembler extensions.
The implementation described in this paper can be applied to computation of
Discrete Wavelet Transform on general-purpose processors..

Key words: Orthogonal Filters, Discrete Wavelet Transform, SSE extensions

1 Introduction

Discrete Wavelet Transform (DWT) is applied to data compression, sys-
tem identification, signal approximation and interpolation, image processing
and recognition as well as synthesis of digital watermarking [1-4].

z(n)

synthesis analysis

x(n)

n=0,1,…,N-1

y1(n)

y2(n)

n=0,1,…,N/2-1

H

G

Q

R

n=0,1,…,N-1

↓2

↓2

↑2

↑2

Figure 1. Diagram of one stage of analysis and synthesis of Discrete Wavelet Trans-
form.

123

IMPLEMENTATION OF THE WAVELET TRANSFORM
WITH SSE EXTENSIONS

Tadeusz Łyszkowski1, Tomasz Wiechno2, Mykhaylo Yatsymirskyy2
1Higher Vocational State School in Wloclawek

tadeusz.lyszkowski@pwsz.wloclawek.pl
2Institute of Information Technology, Lodz University of Technology

tomasz.wiechn@p.lodz.pl, mykhaylo.yatsymirskyy@p.lodz.pl

Abstract
It has been shown that application of assembly implementation of Streaming
SIMD Extensions (SSE) shortens the time needed to apply filtration in two-
channel filter bank by tenfold, comparing to non-optimized version, written in
Microsoft Visual C++ 2010 Express, without assembler extensions.
The implementation described in this paper can be applied to computation of
Discrete Wavelet Transform on general-purpose processors..

Key words: Orthogonal Filters, Discrete Wavelet Transform, SSE extensions

1 Introduction

Discrete Wavelet Transform (DWT) is applied to data compression, sys-
tem identification, signal approximation and interpolation, image processing
and recognition as well as synthesis of digital watermarking [1-4].

z(n)

synthesis analysis

x(n)

n=0,1,…,N-1

y1(n)

y2(n)

n=0,1,…,N/2-1

H

G

Q

R

n=0,1,…,N-1

↓2

↓2

↑2

↑2

Figure 1. Diagram of one stage of analysis and synthesis of Discrete Wavelet Trans-
form.

Implementation Of The Wavelet ...

124

Because of such wide and profound applications, there is a lot of research
on the improvements of Fast Computational Algorithms for the Discrete
Wavelet Transform [5-10]. The construction of the algorithm is based on pa-
rallel or pyramidal repetition of basic analysis stage for forward transform and
a basic synthesis stage for inverse transform. The two channel biorthogonal
filter banks shown on Figure 1. [11] are a classic model of such a transform.

Blocks H, G, Q and R, are linear filters with finite impulse response H =
h0,h1,...,hK-1, G = g0,g1,...,gK-1, Q = q0,q1,...,qK-1 i R = r0,r1,...,rK-1, where the
length of the filter K is an even natural number. Blocks ↓2 and ↑2 denote,
respectively, the operations of decimation in time of input sequence (down-
sampling) and upsampling by a factor of 2, i.e. inserting zeroes between each
sample of a input sequence.The results of analysis stage of (forward) DWT
can be expressed as two convolutions with decimation [12]

y2i = ,
1

0
21,

−

=
+−−

K

k
kikKK xh

y2i+1 =
−

=
+−−

1

0
21,

K

k
kikKK xg i = 0,1,...,N/2-1,

(1)

where hK,k ,gK,k for k = 0,1,...,K-1 are impulse responses of filters HK, GK,
and N is the length of input sequence.

If coefficients of impulse responses of filters HK and GK are written in re-
versed order:

h1K,k = hK,K-1-k, g1K,k = gK,K-1-k k = 0,1,...,K-1

formulas (1) can be rewritten in the form (2) that is more convenient for
implementation

y2i =
−

=
+

1

0
2, ,1

K

k
kikK xh

y2i+1 =
−

=
+

1

0
2,1

K

k
kikK xg for i = 0,1,...,N/2-1.

(2)

From (2) it is clear that the time needed for computation of DWT ex-
pressed as a convolution, depends on the effectiveness of floating point mul-
tiplications and additions. Exploiting Data Level Parallelism this can be en-
hanced by the usage of Streaming SIMD Extensions (SSE) available on con-
temporary general-purpose processors.

Łyszkowski T., Wiechno T., Yatsymirskyy M.

125

The paper describes construction of assembler implementations of DWT
algorithms (2) that make use of SSE. The algorithms are given for a number
of filter lengths K = 6,8,10 and 12 and the results are compared with the refer-
ence algorithms written in pure C++.

The problem solved in the paper is important as the majority of personal
computers in use, is equipped with processors that are compliant with SSE
rather than newer AVX extensions, introduced in 2011 [13].

2 SSE in IA-32 architecture

Beginning from the Pentium III processor the Streaming SIMD Extensions
(SSE) were introduced to the IA-32 architecture. The SSE expands the SIMD
execution model introduced with the Intel (Multimedia Extension) MMX
technology by providing a new set of eight 128-bit registers xmm0,
xmm1 ... xmm7 and the ability to perform (single-instruction, multiple-data)
SIMD operations on four 32-bit packed single-precision floating-point values
[13].The same operation can be performed at the same instruction cycle on
four float elements stored in xmm register or in four array elements kept in
memory.

Because of this parallelism in data processing, application of SSE Exten-
sions can yield even fourfold performance gain comparing to a code that is
non SSE aware. It is worth noting that data level parallelism reduces up to
four times the number of instructions needed to write the algorithm.

3 Implementation of one stage of forward DWT computed as a
convolution

Figure 2 shows the reference C++ implementation of DWT written accord-
ing to the formula (2).

 // DWT in C++
 for (int i=0;i<N;i+=2)
 {
 float t1=h1[0]*x[i], t2=g1[0]*x[i];
 for (int k=1;k<K;k++)
 {
 t1+=h1[k]*x[i+k]; t2+=g1[k]*x[i+k];
 }
 y[i]=t1; y[i+1]=t2;
 }

Figure 2. Algorithm of the one stage of forward DWT computed as a con-

volution in C++.

Implementation Of The Wavelet ...

124

Because of such wide and profound applications, there is a lot of research
on the improvements of Fast Computational Algorithms for the Discrete
Wavelet Transform [5-10]. The construction of the algorithm is based on pa-
rallel or pyramidal repetition of basic analysis stage for forward transform and
a basic synthesis stage for inverse transform. The two channel biorthogonal
filter banks shown on Figure 1. [11] are a classic model of such a transform.

Blocks H, G, Q and R, are linear filters with finite impulse response H =
h0,h1,...,hK-1, G = g0,g1,...,gK-1, Q = q0,q1,...,qK-1 i R = r0,r1,...,rK-1, where the
length of the filter K is an even natural number. Blocks ↓2 and ↑2 denote,
respectively, the operations of decimation in time of input sequence (down-
sampling) and upsampling by a factor of 2, i.e. inserting zeroes between each
sample of a input sequence.The results of analysis stage of (forward) DWT
can be expressed as two convolutions with decimation [12]

y2i = ,
1

0
21,

−

=
+−−

K

k
kikKK xh

y2i+1 =
−

=
+−−

1

0
21,

K

k
kikKK xg i = 0,1,...,N/2-1,

(1)

where hK,k ,gK,k for k = 0,1,...,K-1 are impulse responses of filters HK, GK,
and N is the length of input sequence.

If coefficients of impulse responses of filters HK and GK are written in re-
versed order:

h1K,k = hK,K-1-k, g1K,k = gK,K-1-k k = 0,1,...,K-1

formulas (1) can be rewritten in the form (2) that is more convenient for
implementation

y2i =
−

=
+

1

0
2, ,1

K

k
kikK xh

y2i+1 =
−

=
+

1

0
2,1

K

k
kikK xg for i = 0,1,...,N/2-1.

(2)

From (2) it is clear that the time needed for computation of DWT ex-
pressed as a convolution, depends on the effectiveness of floating point mul-
tiplications and additions. Exploiting Data Level Parallelism this can be en-
hanced by the usage of Streaming SIMD Extensions (SSE) available on con-
temporary general-purpose processors.

Łyszkowski T., Wiechno T., Yatsymirskyy M.

125

The paper describes construction of assembler implementations of DWT
algorithms (2) that make use of SSE. The algorithms are given for a number
of filter lengths K = 6,8,10 and 12 and the results are compared with the refer-
ence algorithms written in pure C++.

The problem solved in the paper is important as the majority of personal
computers in use, is equipped with processors that are compliant with SSE
rather than newer AVX extensions, introduced in 2011 [13].

2 SSE in IA-32 architecture

Beginning from the Pentium III processor the Streaming SIMD Extensions
(SSE) were introduced to the IA-32 architecture. The SSE expands the SIMD
execution model introduced with the Intel (Multimedia Extension) MMX
technology by providing a new set of eight 128-bit registers xmm0,
xmm1 ... xmm7 and the ability to perform (single-instruction, multiple-data)
SIMD operations on four 32-bit packed single-precision floating-point values
[13].The same operation can be performed at the same instruction cycle on
four float elements stored in xmm register or in four array elements kept in
memory.

Because of this parallelism in data processing, application of SSE Exten-
sions can yield even fourfold performance gain comparing to a code that is
non SSE aware. It is worth noting that data level parallelism reduces up to
four times the number of instructions needed to write the algorithm.

3 Implementation of one stage of forward DWT computed as a
convolution

Figure 2 shows the reference C++ implementation of DWT written accord-
ing to the formula (2).

 // DWT in C++
 for (int i=0;i<N;i+=2)
 {
 float t1=h1[0]*x[i], t2=g1[0]*x[i];
 for (int k=1;k<K;k++)
 {
 t1+=h1[k]*x[i+k]; t2+=g1[k]*x[i+k];
 }
 y[i]=t1; y[i+1]=t2;
 }

Figure 2. Algorithm of the one stage of forward DWT computed as a con-

volution in C++.

Implementation Of The Wavelet ...

126

The algorithm needs K floating-point multiplications and K-1 floating-
point additions to compute one output element. However because of the data
level parallelism it is possible to significantly shorten the time of this compu-
tation by the application of SSE extensions.To maximize performance gain,
the whole algorithm has been programmed in assembly lan-
guage.Furthermore, the inner loop that computes the sum of the product of
input values times coefficients of impulse response (in reversed order), has
been unfolded and optimized for the selected filter lengths, to shorten the
most computation intensive part. The outer loop that contains mainly instruc-
tions for reading samples and writing output coefficients has been left intact.

Hence, further discussion in this section will concern major parts of the
two assembler implementations of forward DWT for N being divisible by 4,
namely: version A, for filers of length K=6 and 8, version B, for K=10 and 12
as well as some elements of version C, for N being even and K=6.

3.1 Version A. Implementation of DWT using assembler with SSE
extensions

The implementation of this version, for filter length K=8 is shown on Fig-
ure 3. For the sake of clarity and speed of computation it has been assumed
that the number of input samples N is divisible by 4. It is not really a con-
straint as, in majority of DWT applications, the length of input sequence is
power of 2 with the exponent greater than 1. However, this makes it possible
to compute and keep four output coefficients in xmm register as well as store
them into the memory on every iteration of the loop.

In the discussed implementation there are eight steps. The first step shown
on part a) of Figure 3. loads four input samples x3, x2, x1, x0 into the register
xmm0 and next four samples x7, x6, x5, x4 into the register xmm1. It is illu-
strated by the comments to the code, where four parts of the relevant register
are shown for every instruction. In part b) registers xmm4, xmm5, xmm6 i
xmm7 are loaded with coefficients of impulse responses h1 and g1 in reversed
order.

mov ecx,0 ;(i=0)ecx=0
movaps xmm0,x[ecx] ; xmm0=x3|x2|x1|x0
movaps xmm1,x[ecx+16] ; xmm1=x7|x6|x5|x4
movaps buf1,xmm1 ; buf1=x7|x6|x5|x4

− Loading input data to the xmm registers

movaps xmm4,h1 ; xmm4=h13|h12|h11|h10
movaps xmm5,h1[16] ; xmm5=h17|h16|h15|h14
movaps xmm6,g1 ; xmm6=g13|g12|g11|g10

Łyszkowski T., Wiechno T., Yatsymirskyy M.

127

movaps xmm7,g1[16] ; xmm7=g17|g16|g15|g14

− Loading parameters h1 and g1 to the xmm registers

iloop:
movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0
mulps xmm2,xmm4 ; xmm2=xi+3*h13|xi+2*h12|

; xi+1*h11|xi+0*h10
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4
mulps xmm3,xmm5 ; xmm3=xi+7*h17|xi+6*h16|

; xi+5*h15|xi+4*h14
addps xmm2,xmm3 ; xmm2=xi+7*h17+xi+3*h13|

; xi+6*h16+xi+2*h12|
;xi+5*h15+xi+1*h11|xi+4*h14+xi+0*h10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

;xi+7*h17+xi+3*h13+xi+6*h16+xi+2*h12|
; xi+5*h15+xi+1*h11+xi+4*h14+xi+0*h10

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0|
; xi+7*h17+xi+6*h16+xi+5*h15+xi+4*h14+
; xi+3*h13+xi+2*h12+xi+1*h11+xi+0*h10

movaps buf5,xmm2 ; buf5=0.0|0.0|0.0|t1

− Computation of coefficient t1 of DWT (at that moment it is yi+0)

movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0
mulps xmm2,xmm6 ; xmm2=xi+3*g13|xi+2*g12|

; xi+1*g11|xi+0*g10
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4
mulps xmm3,xmm7 ; xmm3=xi+7*g17|xi+6*g16|

; xi+5*g15|xi+4*g14
addps xmm2,xmm3 ; xmm2=xi+7*g17+xi+3*g13|

; xi+6*g16+xi+2*g12|
; xi+5*g15+xi+1*g11|
; xi+4*g14+xi+0*g10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

; xi+7*g17+xi+3*g13+
; xi+6*g16+xi+2*g12|
; xi+5*g15+xi+1*g11+
; xi+4*g14+xi+0*g10

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0|
; xi+7*g17+xi+6*g16+

Implementation Of The Wavelet ...

126

The algorithm needs K floating-point multiplications and K-1 floating-
point additions to compute one output element. However because of the data
level parallelism it is possible to significantly shorten the time of this compu-
tation by the application of SSE extensions.To maximize performance gain,
the whole algorithm has been programmed in assembly lan-
guage.Furthermore, the inner loop that computes the sum of the product of
input values times coefficients of impulse response (in reversed order), has
been unfolded and optimized for the selected filter lengths, to shorten the
most computation intensive part. The outer loop that contains mainly instruc-
tions for reading samples and writing output coefficients has been left intact.

Hence, further discussion in this section will concern major parts of the
two assembler implementations of forward DWT for N being divisible by 4,
namely: version A, for filers of length K=6 and 8, version B, for K=10 and 12
as well as some elements of version C, for N being even and K=6.

3.1 Version A. Implementation of DWT using assembler with SSE
extensions

The implementation of this version, for filter length K=8 is shown on Fig-
ure 3. For the sake of clarity and speed of computation it has been assumed
that the number of input samples N is divisible by 4. It is not really a con-
straint as, in majority of DWT applications, the length of input sequence is
power of 2 with the exponent greater than 1. However, this makes it possible
to compute and keep four output coefficients in xmm register as well as store
them into the memory on every iteration of the loop.

In the discussed implementation there are eight steps. The first step shown
on part a) of Figure 3. loads four input samples x3, x2, x1, x0 into the register
xmm0 and next four samples x7, x6, x5, x4 into the register xmm1. It is illu-
strated by the comments to the code, where four parts of the relevant register
are shown for every instruction. In part b) registers xmm4, xmm5, xmm6 i
xmm7 are loaded with coefficients of impulse responses h1 and g1 in reversed
order.

mov ecx,0 ;(i=0)ecx=0
movaps xmm0,x[ecx] ; xmm0=x3|x2|x1|x0
movaps xmm1,x[ecx+16] ; xmm1=x7|x6|x5|x4
movaps buf1,xmm1 ; buf1=x7|x6|x5|x4

− Loading input data to the xmm registers

movaps xmm4,h1 ; xmm4=h13|h12|h11|h10
movaps xmm5,h1[16] ; xmm5=h17|h16|h15|h14
movaps xmm6,g1 ; xmm6=g13|g12|g11|g10

Łyszkowski T., Wiechno T., Yatsymirskyy M.

127

movaps xmm7,g1[16] ; xmm7=g17|g16|g15|g14

− Loading parameters h1 and g1 to the xmm registers

iloop:
movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0
mulps xmm2,xmm4 ; xmm2=xi+3*h13|xi+2*h12|

; xi+1*h11|xi+0*h10
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4
mulps xmm3,xmm5 ; xmm3=xi+7*h17|xi+6*h16|

; xi+5*h15|xi+4*h14
addps xmm2,xmm3 ; xmm2=xi+7*h17+xi+3*h13|

; xi+6*h16+xi+2*h12|
;xi+5*h15+xi+1*h11|xi+4*h14+xi+0*h10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

;xi+7*h17+xi+3*h13+xi+6*h16+xi+2*h12|
; xi+5*h15+xi+1*h11+xi+4*h14+xi+0*h10

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0|
; xi+7*h17+xi+6*h16+xi+5*h15+xi+4*h14+
; xi+3*h13+xi+2*h12+xi+1*h11+xi+0*h10

movaps buf5,xmm2 ; buf5=0.0|0.0|0.0|t1

− Computation of coefficient t1 of DWT (at that moment it is yi+0)

movaps xmm2,xmm0 ; xmm2=xi+3|xi+2|xi+1|xi+0
mulps xmm2,xmm6 ; xmm2=xi+3*g13|xi+2*g12|

; xi+1*g11|xi+0*g10
movaps xmm3,xmm1 ; xmm3=xi+7|xi+6|xi+5|xi+4
mulps xmm3,xmm7 ; xmm3=xi+7*g17|xi+6*g16|

; xi+5*g15|xi+4*g14
addps xmm2,xmm3 ; xmm2=xi+7*g17+xi+3*g13|

; xi+6*g16+xi+2*g12|
; xi+5*g15+xi+1*g11|
; xi+4*g14+xi+0*g10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

; xi+7*g17+xi+3*g13+
; xi+6*g16+xi+2*g12|
; xi+5*g15+xi+1*g11+
; xi+4*g14+xi+0*g10

haddps xmm2,xmm3 ; xmm2=0.0|0.0|0.0|
; xi+7*g17+xi+6*g16+

Implementation Of The Wavelet ...

128

; xi+5*g15+xi+4*g14+xi+3*g13+
; xi+2*g12+xi+1*g11+xi+0*g10

shufps xmm2,xmm2,11110011b ; xmm2=0.0|0.0|t2|0.0
addps xmm2,buf5 ; xmm2=0.0|0.0|t2|t1
movaps buf5,xmm2 ; buf5=0.0|0.0|yi+1|yi+0

− Computation of coefficient t2 of DWT (at that moment it is yi+1)

movaps xmm2,x[ecx+32] ; xmm2=xi+11|xi+10|xi+9|xi+8
movaps buf0,xmm2 ; buf0=xi+11|xi+10|xi+9|xi+8
shufps xmm0,xmm1,01001110b ; xmm0=xi+5|xi+4|xi+3|xi+2
shufps xmm1,xmm2,01001110b ; xmm1=xi+9|xi+8|xi+7|xi+6

− Loading new input data to the xmm registers

movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2
mulps xmm2,xmm4 ; xmm2=xi+5*h13|xi+4*h12|

; xi+3*h11|xi+2*h10
movaps xmm3,xmm1 ; xmm3=xi+9|xi+8|xi+7|xi+6
mulps xmm3,xmm5 ; xmm3=xi+9*h17|xi+8*h16|

; xi+7*h15|xi+6*h14
addps xmm2,xmm3 ; xmm2=xi+9*h17+xi+5*h13|

; xi+8*h16+xi+4*h12|
; xi+7*h15+xi+3*h11|
; xi+6*h14+xi+2*h10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

; xi+9*h17+xi+5*h13+
; xi+8*h16+xi+4*h12|
; xi+7*h15+xi+3*h11+
; xi+6*h14+xi+2*h10

haddps xmm3,xmm2 ; xmm3=0.0|
; xi+9*h17+xi+8*h16+
; xi+7*h15+xi+6*h14+
; xi+5*h13+xi+4*h12+
; xi+3*h11+xi+2*h10|
; 0.0|0.0

movaps buf6,xmm3 ; buf6=0.0|t1|0.0|0.0

− Computation of coefficient t1 of DWT (at that moment it is yi+2)

movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2

Łyszkowski T., Wiechno T., Yatsymirskyy M.

129

mulps xmm2,xmm6 ; xmm2=xi+5*g13|xi+4*g12|xi+3*g11|
; xi+2*g10

movaps xmm3,xmm1 ; xmm3=xi+9|xi+8|xi+7|xi+6
mulps xmm3,xmm7 ; xmm3=xi+9*g17|xi+8*g16|xi+7*g15|

; xi+6*g14
addps xmm2,xmm3 ; xmm2=xi+9*g17+xi+5*g13|

; xi+8*g16+xi+4*g12|
; xi+7*g15+xi+3*g11|
; xi+6*g14+xi+2*g10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

; xi+9*g17+xi+5*g13+
; xi+8*g16+xi+4*g12|
; xi+7*g15+xi+3*g11+
; xi+6*g14+xi+2*g10

haddps xmm3,xmm2 ; xmm3=0.0|xi+9*g17+xi+8*g16+
; xi+7*g15+xi+6*g14+
; xi+5*g13+xi+4*g12+
; xi+3*g11+xi+2*g10|0.0|0.0

shufps xmm3,xmm3,10000000b ; xmm3=t2|0.0|0.0|0.0
addps xmm3,buf6 ; xmm3=t2|t1|0.0|0.0
addps xmm3,buf5 ; xmm3=yi+3|yi+2|yi+1|yi+0
movapsy[ecx],xmm3 ; y[ecx]=yi+3|yi+2|yi+1|yi+0

− Computation of coefficient t2 of DWT (at that moment it is yi+3),

assembling yi+3, yi+2, yi+1, yi+0, in xmm register and storing its content
into the memory

add ecx,16 ;(i=i+4) i.e. ecx=ecx+16
movaps xmm0,buf1 ; xmm0=xi+7|xi+6|xi+5|xi+4
movaps xmm1,buf0 ; xmm1=xi+11|xi+10|xi+9|xi+8
movaps buf1,xmm1 ; buf1=xi+11|xi+10|xi+9|xi+8
cmpecx,NN ; Test the end of loop

; condition(ecx = NN),
;where NN=(N/4)*16

jneiloop ; Jump to the label iloop
; mentioned in step c)
; if ecx ≠ NN

− updating xmm0 i xmm1 before the next iteration of the loop and exit from
the loop.

Implementation Of The Wavelet ...

128

; xi+5*g15+xi+4*g14+xi+3*g13+
; xi+2*g12+xi+1*g11+xi+0*g10

shufps xmm2,xmm2,11110011b ; xmm2=0.0|0.0|t2|0.0
addps xmm2,buf5 ; xmm2=0.0|0.0|t2|t1
movaps buf5,xmm2 ; buf5=0.0|0.0|yi+1|yi+0

− Computation of coefficient t2 of DWT (at that moment it is yi+1)

movaps xmm2,x[ecx+32] ; xmm2=xi+11|xi+10|xi+9|xi+8
movaps buf0,xmm2 ; buf0=xi+11|xi+10|xi+9|xi+8
shufps xmm0,xmm1,01001110b ; xmm0=xi+5|xi+4|xi+3|xi+2
shufps xmm1,xmm2,01001110b ; xmm1=xi+9|xi+8|xi+7|xi+6

− Loading new input data to the xmm registers

movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2
mulps xmm2,xmm4 ; xmm2=xi+5*h13|xi+4*h12|

; xi+3*h11|xi+2*h10
movaps xmm3,xmm1 ; xmm3=xi+9|xi+8|xi+7|xi+6
mulps xmm3,xmm5 ; xmm3=xi+9*h17|xi+8*h16|

; xi+7*h15|xi+6*h14
addps xmm2,xmm3 ; xmm2=xi+9*h17+xi+5*h13|

; xi+8*h16+xi+4*h12|
; xi+7*h15+xi+3*h11|
; xi+6*h14+xi+2*h10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

; xi+9*h17+xi+5*h13+
; xi+8*h16+xi+4*h12|
; xi+7*h15+xi+3*h11+
; xi+6*h14+xi+2*h10

haddps xmm3,xmm2 ; xmm3=0.0|
; xi+9*h17+xi+8*h16+
; xi+7*h15+xi+6*h14+
; xi+5*h13+xi+4*h12+
; xi+3*h11+xi+2*h10|
; 0.0|0.0

movaps buf6,xmm3 ; buf6=0.0|t1|0.0|0.0

− Computation of coefficient t1 of DWT (at that moment it is yi+2)

movaps xmm2,xmm0 ; xmm2=xi+5|xi+4|xi+3|xi+2

Łyszkowski T., Wiechno T., Yatsymirskyy M.

129

mulps xmm2,xmm6 ; xmm2=xi+5*g13|xi+4*g12|xi+3*g11|
; xi+2*g10

movaps xmm3,xmm1 ; xmm3=xi+9|xi+8|xi+7|xi+6
mulps xmm3,xmm7 ; xmm3=xi+9*g17|xi+8*g16|xi+7*g15|

; xi+6*g14
addps xmm2,xmm3 ; xmm2=xi+9*g17+xi+5*g13|

; xi+8*g16+xi+4*g12|
; xi+7*g15+xi+3*g11|
; xi+6*g14+xi+2*g10

movaps xmm3,zeros ; xmm3=0.0|0.0|0.0|0.0
haddps xmm2,xmm3 ; xmm2=0.0|0.0|

; xi+9*g17+xi+5*g13+
; xi+8*g16+xi+4*g12|
; xi+7*g15+xi+3*g11+
; xi+6*g14+xi+2*g10

haddps xmm3,xmm2 ; xmm3=0.0|xi+9*g17+xi+8*g16+
; xi+7*g15+xi+6*g14+
; xi+5*g13+xi+4*g12+
; xi+3*g11+xi+2*g10|0.0|0.0

shufps xmm3,xmm3,10000000b ; xmm3=t2|0.0|0.0|0.0
addps xmm3,buf6 ; xmm3=t2|t1|0.0|0.0
addps xmm3,buf5 ; xmm3=yi+3|yi+2|yi+1|yi+0
movapsy[ecx],xmm3 ; y[ecx]=yi+3|yi+2|yi+1|yi+0

− Computation of coefficient t2 of DWT (at that moment it is yi+3),

assembling yi+3, yi+2, yi+1, yi+0, in xmm register and storing its content
into the memory

add ecx,16 ;(i=i+4) i.e. ecx=ecx+16
movaps xmm0,buf1 ; xmm0=xi+7|xi+6|xi+5|xi+4
movaps xmm1,buf0 ; xmm1=xi+11|xi+10|xi+9|xi+8
movaps buf1,xmm1 ; buf1=xi+11|xi+10|xi+9|xi+8
cmpecx,NN ; Test the end of loop

; condition(ecx = NN),
;where NN=(N/4)*16

jneiloop ; Jump to the label iloop
; mentioned in step c)
; if ecx ≠ NN

− updating xmm0 i xmm1 before the next iteration of the loop and exit from
the loop.

Implementation Of The Wavelet ...

130

Figure 3. Steps of computation of the coefficients yi+3, yi+2, yi+1, yi+0 for i =
0,4,8,...,N-4 in Version A of the implementation of DWT using assembler
with SSE extensions

After the initialization steps a) - b) the algorithm enters the loop shown in
steps c) - h). The step c) shows how the output coefficient yi+0 is being com-
puted and put into the least significant part of the xmm register. Two SSE
multiplications and three SSE additions are performed in this phase that is
equivalent to eight floating point multiplications and seven additions. The
results are saved to appropriate parts of the xmm register.

The next phase of the loop, namely step d) is devoted to computation of
output coefficient yi+1 and saving it in the subsequent, more significant part of
the xmm register. After this step, the register contains coefficients yi+1, yi+0in
its lower part and floating zeros in the upper part.

This step is almost identical to the preceding one, with the exception of re-
placing impulse response h1with g1.

In step e) registers xmm0 and xmm1 are loaded with input samples shifted
by two positions, in relation to their previous content. Namely,xmm0 contains
samples x5, x4 ,x3 ,x2, and xmm1samples x9, x8, x7, x6. These data will be used to
compute yi+3, yi+2.

Step f) show the details of computation of coefficient yi+2 and points out
that its value is stored in the xmm register, next to already computed yi+1, yi+0.
Again, this phase is very similar to step c), the only difference is the position
in xmm register where the value of yi+2 is being saved.

Similarly, the step g) concerns computation of the forth coefficient yi+3. It
is stored in the most significant part of the register xmm. The final quadruplet
yi+3, yi+2, yi+1, yi+0 is saved from the xmm register into the memory.

The last phase of loop shown as step h) increments loop counter in ecx reg-
ister by 16 (i.e. the size of xmm register in bytes) This value will be used to
address input samples x and output coefficients y.

In the following lines of code, registers xmm0 and xmm1 are being pre-
pared for computation of output coefficients yi+3, yi+2, yi+1, yi+0 in the next
iteration of the loop (with i incremented by 4).

The loop concludes with a test condition ecx ≠ NN, where NN=(N/4)*16.
If this condition is met the code jumps to the label iloop discussed in

step c), i.e. the beginning of the loop.
The code for case K=8 can be also used for K=6, provided the two most

significant coefficients of reversed order impulse responses are set to zero, i.e.
h17=h16=g17=g16=0. However, coefficients h15… h10 and g15… g10 need to
be initialized with corrected values, appropriate for K=6.

Łyszkowski T., Wiechno T., Yatsymirskyy M.

131

3.2 Version B. Implementation of DWT using assembler with SSE
extensions

The implementation for filter length K=12 is similar to Version A. Again it
has been assumed that the number of input samples N is divisible by 4, which
makes it possible to process, in one iteration of the loop, four output coeffi-
cient in the register xmm.

The implementation can be logically divided into 8 steps. At first, the reg-
isters xmm0 are loaded with values x3, x2, x1, x0, xmm1 with x7, x6, x5, x4 and
xmm2 with x11, x10, x9, x8. The reversed coefficients of impulse responses h17,
h16, h15, h14and h13, h12, h11, h10 are sent to xmm5 and xmm4, while g17, g16,
g15, g14and g13, g12, g11, g10 are sent to xmm7 and xmm6. However, because
of the limited number of xmm registers the most significant parts of h111, h110,
h19, h18 and g111, g110, g19, g18 will be fetched from memory.

Following the above initialization code there are six steps in the loop, as
they were in version A.The first step shows how the output coefficient yi+0 is
being computed and put into the least significant part of the xmm register.
Three SSE multiplications and four SSE additions are performed in this phase
which is equivalent to twelve floating point multiplications and eleven addi-
tions. The results are saved to appropriate parts of the xmm register.

The next phase of the loop is devoted to computation of output coefficient
yi+1 and saving it into the subsequent, more significant part of the xmm regis-
ter. After this step, the register contains coefficients yi+1, yi+0in its lower part
and floating zeros in the upper part. Thatphase of the algorithm is almost iden-
tical to the preceding one, with the exception of replacing impulse response
h1with g1.

In the next step registers xmm0, xmm1 and xmm2 are loaded with input
samples shifted by two positions, in relation to their previous content. Name-
ly,xmm0 contains samples x5, x4 ,x3 ,x2,, xmm1samples x9, x8, x7, x6, andxmm2
samples x13, x12, x11, x10. These data will be used to compute yi+3, yi+2.

In the subsequent step, coefficient yi+2 is being computed and stored in the
xmm register, next to the already computed yi+1, yi+0. Again, this phase is very
similar to the computation of yi+0, the only difference is the position in xmm
register where the value of yi+2 is being saved.

Similarly, the following step, concerns computation of the last coefficient
yi+3. It is stored in the most significant part of the register xmm. The final qua-
druplet yi+3, yi+2, yi+1, yi+0 is transferred from the xmm register into the memo-
ry.

The last phase of loop increments loop counter in ecx register by 16 (i.e.
the size of xmm register in bytes). This value will be used to address input
samples x and output coefficients y.

In the following lines of code, registers xmm are being prepared for com-
putation of output coefficients yi+3, yi+2, yi+1, yi+0 in the next iteration of the

Implementation Of The Wavelet ...

130

Figure 3. Steps of computation of the coefficients yi+3, yi+2, yi+1, yi+0 for i =
0,4,8,...,N-4 in Version A of the implementation of DWT using assembler
with SSE extensions

After the initialization steps a) - b) the algorithm enters the loop shown in
steps c) - h). The step c) shows how the output coefficient yi+0 is being com-
puted and put into the least significant part of the xmm register. Two SSE
multiplications and three SSE additions are performed in this phase that is
equivalent to eight floating point multiplications and seven additions. The
results are saved to appropriate parts of the xmm register.

The next phase of the loop, namely step d) is devoted to computation of
output coefficient yi+1 and saving it in the subsequent, more significant part of
the xmm register. After this step, the register contains coefficients yi+1, yi+0in
its lower part and floating zeros in the upper part.

This step is almost identical to the preceding one, with the exception of re-
placing impulse response h1with g1.

In step e) registers xmm0 and xmm1 are loaded with input samples shifted
by two positions, in relation to their previous content. Namely,xmm0 contains
samples x5, x4 ,x3 ,x2, and xmm1samples x9, x8, x7, x6. These data will be used to
compute yi+3, yi+2.

Step f) show the details of computation of coefficient yi+2 and points out
that its value is stored in the xmm register, next to already computed yi+1, yi+0.
Again, this phase is very similar to step c), the only difference is the position
in xmm register where the value of yi+2 is being saved.

Similarly, the step g) concerns computation of the forth coefficient yi+3. It
is stored in the most significant part of the register xmm. The final quadruplet
yi+3, yi+2, yi+1, yi+0 is saved from the xmm register into the memory.

The last phase of loop shown as step h) increments loop counter in ecx reg-
ister by 16 (i.e. the size of xmm register in bytes) This value will be used to
address input samples x and output coefficients y.

In the following lines of code, registers xmm0 and xmm1 are being pre-
pared for computation of output coefficients yi+3, yi+2, yi+1, yi+0 in the next
iteration of the loop (with i incremented by 4).

The loop concludes with a test condition ecx ≠ NN, where NN=(N/4)*16.
If this condition is met the code jumps to the label iloop discussed in

step c), i.e. the beginning of the loop.
The code for case K=8 can be also used for K=6, provided the two most

significant coefficients of reversed order impulse responses are set to zero, i.e.
h17=h16=g17=g16=0. However, coefficients h15… h10 and g15… g10 need to
be initialized with corrected values, appropriate for K=6.

Łyszkowski T., Wiechno T., Yatsymirskyy M.

131

3.2 Version B. Implementation of DWT using assembler with SSE
extensions

The implementation for filter length K=12 is similar to Version A. Again it
has been assumed that the number of input samples N is divisible by 4, which
makes it possible to process, in one iteration of the loop, four output coeffi-
cient in the register xmm.

The implementation can be logically divided into 8 steps. At first, the reg-
isters xmm0 are loaded with values x3, x2, x1, x0, xmm1 with x7, x6, x5, x4 and
xmm2 with x11, x10, x9, x8. The reversed coefficients of impulse responses h17,
h16, h15, h14and h13, h12, h11, h10 are sent to xmm5 and xmm4, while g17, g16,
g15, g14and g13, g12, g11, g10 are sent to xmm7 and xmm6. However, because
of the limited number of xmm registers the most significant parts of h111, h110,
h19, h18 and g111, g110, g19, g18 will be fetched from memory.

Following the above initialization code there are six steps in the loop, as
they were in version A.The first step shows how the output coefficient yi+0 is
being computed and put into the least significant part of the xmm register.
Three SSE multiplications and four SSE additions are performed in this phase
which is equivalent to twelve floating point multiplications and eleven addi-
tions. The results are saved to appropriate parts of the xmm register.

The next phase of the loop is devoted to computation of output coefficient
yi+1 and saving it into the subsequent, more significant part of the xmm regis-
ter. After this step, the register contains coefficients yi+1, yi+0in its lower part
and floating zeros in the upper part. Thatphase of the algorithm is almost iden-
tical to the preceding one, with the exception of replacing impulse response
h1with g1.

In the next step registers xmm0, xmm1 and xmm2 are loaded with input
samples shifted by two positions, in relation to their previous content. Name-
ly,xmm0 contains samples x5, x4 ,x3 ,x2,, xmm1samples x9, x8, x7, x6, andxmm2
samples x13, x12, x11, x10. These data will be used to compute yi+3, yi+2.

In the subsequent step, coefficient yi+2 is being computed and stored in the
xmm register, next to the already computed yi+1, yi+0. Again, this phase is very
similar to the computation of yi+0, the only difference is the position in xmm
register where the value of yi+2 is being saved.

Similarly, the following step, concerns computation of the last coefficient
yi+3. It is stored in the most significant part of the register xmm. The final qua-
druplet yi+3, yi+2, yi+1, yi+0 is transferred from the xmm register into the memo-
ry.

The last phase of loop increments loop counter in ecx register by 16 (i.e.
the size of xmm register in bytes). This value will be used to address input
samples x and output coefficients y.

In the following lines of code, registers xmm are being prepared for com-
putation of output coefficients yi+3, yi+2, yi+1, yi+0 in the next iteration of the

Implementation Of The Wavelet ...

132

loop (with i incremented by 4). The loop concludes with a test condition ecx ≠
NN, where NN=(N/4)*16.If this condition is met the code jumps to the label
iloop, i.e. computation of yi+0.

The code that computes DWT for K=12 can be also used for K=10, pro-
vided the most significant coefficients of reversed impulse responses are set to
zero, i.e. h111,=h110,=g111,=g110=0. However, coefficients h19… h10 and
g19… g10 need to be initialized with corrected values, appropriate for K=10.

3.3 Version C. Implementation of DWT using assembler with SSE
extensions

This version of DWT implementation assumes that K=6, but the number of
input samples Nis even. In that case, on every odd iteration of the loop, the
computations are performed in the same way as in version A (see Figure 3.
Step c), and the pair of output coefficients yi+1, yi+0 is saved on the least signif-
icant positions od 128-bit long buffer buf. On every even iteration, a following
pair of output coefficients is being computed and saved in memory, together
with a preceding pair, as a quadruplet of properly ordered coefficients.

If N is not divisible by 4, the last save operation concerns only the last pair
of yi+1, yi+0.The code for computation of output coefficients is identical in
versions A and C of the algorithm, so is the time of computation for K=6.

4 Test environment

All DWT implementations presented in the paper were written as C++ in-
line assembly (with SSE extensions) and compiled with Microsoft Visual C++
2010 Express Version 10.0.40219.1 SP1Rel. The compiled code was executed
on MS Windows 7 Home Premium PC with Intel® Core™ i5 CPU 650
3.20GHz and 4GB of RAM on board. Further, to neglect impact of concurrent
operations of the processor on the computation time, all tests were run pN
times, and the minimum time of execution, obtained with 64-bit clock cycle
counter (measuring the number of clock cycles of the very code responsible
for the computation of DWT), has been taken as a actual result of the mea-
surement.

5 Experimental results

In order to compare effectiveness of the proposed implementation of DWT
using assembler with SSE extensions, it was compared against the reference
program written in pure C++, for the selected lengths of filter K, and a few

Łyszkowski T., Wiechno T., Yatsymirskyy M.

133

lengths of a input sequence N being divisible by 4. The resulting measure-
ments expressed in cycles are gathered in Table 1.

Table 1. Results of measurement for pN = 100 000 000

K Implementation N=64 N=256 N=1024 N=4096

6

C++ 3 465 13 983 55 902 223 611
Assembler with SSE
(version A)

459 1 845 7 395 29 490

8

C++ 4 479 18 246 72 927 291 693
Assembler with SSE
(version A)

459 1 845 7 389 29 862

10

C++ 5 577 22 374 89 193 357 006
Assembler with SSE
(version B)

594 2 403 9 621 38 880

12

C++ 6 579 26 628 106 965 425 748
Assembler with SSE
(version B)

597 2 424 9 657 38 616

As can be seen from the table above, for filters of length K=8 and all tested

values of N, implementation of DWT in assembler, with SSE extensions is
performed almost 10 times faster than pure C++ version. For K=12 the opti-
mized code is almost 11 times faster. This speedup may be attributed to ma-
nually optimized assembler implementation with parallel processing of data
using SSE extensions. As it was mentioned in the information about SSE in
IA-32 architecture, this may shorten the time of computation up to four times.

Further reduction of execution time, results from unfolding the inner loop
which is the most computationally intensive. The outer loop contains mainly
instructions for reading samples x and writing output coefficients y.

Because the implementation for K=6 and 8 uses the same version (A) of
the algorithm, execution time is almost identical in both cases. The same
holds true for version B and K=10 and 12.

Regardless of the version of implementation and the value of K, the
amount of time needed to compute DWT is proportional to the length of the
input sequence (and number of iterations). It is a direct conclusion from the
formula (2).

Eventually the version C, for even N, has been examined. The results are
shown in Table 2.

Implementation Of The Wavelet ...

132

loop (with i incremented by 4). The loop concludes with a test condition ecx ≠
NN, where NN=(N/4)*16.If this condition is met the code jumps to the label
iloop, i.e. computation of yi+0.

The code that computes DWT for K=12 can be also used for K=10, pro-
vided the most significant coefficients of reversed impulse responses are set to
zero, i.e. h111,=h110,=g111,=g110=0. However, coefficients h19… h10 and
g19… g10 need to be initialized with corrected values, appropriate for K=10.

3.3 Version C. Implementation of DWT using assembler with SSE
extensions

This version of DWT implementation assumes that K=6, but the number of
input samples Nis even. In that case, on every odd iteration of the loop, the
computations are performed in the same way as in version A (see Figure 3.
Step c), and the pair of output coefficients yi+1, yi+0 is saved on the least signif-
icant positions od 128-bit long buffer buf. On every even iteration, a following
pair of output coefficients is being computed and saved in memory, together
with a preceding pair, as a quadruplet of properly ordered coefficients.

If N is not divisible by 4, the last save operation concerns only the last pair
of yi+1, yi+0.The code for computation of output coefficients is identical in
versions A and C of the algorithm, so is the time of computation for K=6.

4 Test environment

All DWT implementations presented in the paper were written as C++ in-
line assembly (with SSE extensions) and compiled with Microsoft Visual C++
2010 Express Version 10.0.40219.1 SP1Rel. The compiled code was executed
on MS Windows 7 Home Premium PC with Intel® Core™ i5 CPU 650
3.20GHz and 4GB of RAM on board. Further, to neglect impact of concurrent
operations of the processor on the computation time, all tests were run pN
times, and the minimum time of execution, obtained with 64-bit clock cycle
counter (measuring the number of clock cycles of the very code responsible
for the computation of DWT), has been taken as a actual result of the mea-
surement.

5 Experimental results

In order to compare effectiveness of the proposed implementation of DWT
using assembler with SSE extensions, it was compared against the reference
program written in pure C++, for the selected lengths of filter K, and a few

Łyszkowski T., Wiechno T., Yatsymirskyy M.

133

lengths of a input sequence N being divisible by 4. The resulting measure-
ments expressed in cycles are gathered in Table 1.

Table 1. Results of measurement for pN = 100 000 000

K Implementation N=64 N=256 N=1024 N=4096

6

C++ 3 465 13 983 55 902 223 611
Assembler with SSE
(version A)

459 1 845 7 395 29 490

8

C++ 4 479 18 246 72 927 291 693
Assembler with SSE
(version A)

459 1 845 7 389 29 862

10

C++ 5 577 22 374 89 193 357 006
Assembler with SSE
(version B)

594 2 403 9 621 38 880

12

C++ 6 579 26 628 106 965 425 748
Assembler with SSE
(version B)

597 2 424 9 657 38 616

As can be seen from the table above, for filters of length K=8 and all tested

values of N, implementation of DWT in assembler, with SSE extensions is
performed almost 10 times faster than pure C++ version. For K=12 the opti-
mized code is almost 11 times faster. This speedup may be attributed to ma-
nually optimized assembler implementation with parallel processing of data
using SSE extensions. As it was mentioned in the information about SSE in
IA-32 architecture, this may shorten the time of computation up to four times.

Further reduction of execution time, results from unfolding the inner loop
which is the most computationally intensive. The outer loop contains mainly
instructions for reading samples x and writing output coefficients y.

Because the implementation for K=6 and 8 uses the same version (A) of
the algorithm, execution time is almost identical in both cases. The same
holds true for version B and K=10 and 12.

Regardless of the version of implementation and the value of K, the
amount of time needed to compute DWT is proportional to the length of the
input sequence (and number of iterations). It is a direct conclusion from the
formula (2).

Eventually the version C, for even N, has been examined. The results are
shown in Table 2.

Implementation Of The Wavelet ...

134

Table 2. Results of measurement for pN = 100 000 000

Implementation N=64 N=256 N=1024 N=4096
Assembler with SSE (version C) 465 1839 7389 29436

The execution times for version C are virtually identical to version A. As a

matter of fact, it is an expected result as both implementations share the same
code to compute output pairs of coefficients. Moreover, although the con-
struction and analysis of version C is more complex than version A, the speed
of version C remains the same. Therefore, it is sufficient to use version A for
K=6 and 8, and version B for K=10 and 12 and exclude special implementa-
tions for N, that are even but not divisible by four.

6 Conclusions

The paper discusses a number of implementations of Discrete Wavelet
Transform written as a formula (2). The experimental results show that ma-
nually optimized C++, with unfolded inner loop and inline assembly code
with SSE extensions, is about 10 times more robust than reference program
written in pure C++. What is more, the obtained speedup looks favorably,
comparing to the results shown in [14] where the SSE enabled code was per-
formed 6x faster than naïve, C++ implementation of the convolution algo-
rithm.

Although it is possible to achieve even further speedup with the applica-
tion of the thread level parallelism of contemporary multi-core processors, the
necessary algorithms are considerably more complicated. Hence, the proposed
solution that use only Data Level Parallelism with SSE extensions is an attrac-
tive alternative, available even on a simple one core processors.

Due to the lower complexity of versions A and B, they are recommended
as effective templates for computation of DWT with application of SSE.

References

1. Zieliński T. P.,2009,Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań,
WKŁ, Warszawa

2. Fleet P. J.: 2008, Discrete wavelet transformations: An elementary Approach
with applications, John Wiley&Sons, New Jersey.

3. Strang G., Nguyen T., 1999,Wavelets and filter banks, Wellesley-Cambridge
Press.

4. Lipiński P.,2011,Watermarking software in practical applications, Bulletin of
Polish Academy of Sciences: Technical Sciences, Vol. 59, nr 1, pp. 21-25.

Łyszkowski T., Wiechno T., Yatsymirskyy M.

135

5. Cooklev T., 2006,An efficient architecture for orthogonal wavelet transforms,
IEEE Signal processing letters, Vol. 13, nr 2, pp. 77-79.

6. Olkkonen J. T., Olkkonen H., 2007,Discrete lattice wavelet transform, IEEE
Transactions on circuits and systems – II: Express briefs, Vol. 54, nr 1, pp. 71-
75.

7. Daubechies I., Sweldens W., 1998,Factoring Wavelet Transform into Lifting
Steps, The Journal of Fourier Analysis and Applications, Vol. 4, nr 3, pp. 245-
267.

8. Denk T. C., Parhi K. K., 1997,VLSI architectures for lattice structure based
orthonormal discrete wavelet transforms, IEEE Transactions on circuits and
systems – II: Analog and digital signal processing, Vol. 44, nr 2, pp. 129-132.

9. Bernabe G., Garcia J. M., Gonzalez J., 2003,Reducing 3D Wavelet Transform
Execution Time through the Streaming SIMD Extensions, IEEE Computer
Society, Proceedings of the Eleventh Euromicro Conference on Parallel,
Distributed and Network-Based Processing, pp. 209-223

10. ShahbahramiA., Juurlink B., Vassiliadis S., 2008,Implementing the 2-D Wavelet
Transform on SIMD-Enhanced General-Purpose processors, IEEE Transactions
on multimedia, Vol. 10, nr 1, pp. 43-51.

11. Yatsymirskyy M., 2011,Nowy model macierzowy dwukanałowego banku
biortogonalnych filtrów, Metody Informatyki Stosowanej, nr 1/2011 (26),
Polska Akademia Nauk Oddział w Gdańsku, Komisja Informatyki, pp. 205-212.

12. Yatsymirskyy M.,Stokfiszewski K., 2012, Effectiveness of Lattice Factorization
of Two-Channel Orthogonal Filter Banks, New Trends in Audio and Video/
Signal Processing Algorithms, Architectures, Arrangements and Applications,
27-29 September, Łódź, pp. 275-279.

13. Intel® 64 and IA-32 Architectures. Software Developer's Manual, Volume 1:
Basic Architecture.

14. Gomersall H., 2012, Speedy fast 1D convolution with SSE,
http://hgomersall.wordpress.com/2012/11/02/speedy-fast-1d-convolution-with-
sse/

Implementation Of The Wavelet ...

134

Table 2. Results of measurement for pN = 100 000 000

Implementation N=64 N=256 N=1024 N=4096
Assembler with SSE (version C) 465 1839 7389 29436

The execution times for version C are virtually identical to version A. As a

matter of fact, it is an expected result as both implementations share the same
code to compute output pairs of coefficients. Moreover, although the con-
struction and analysis of version C is more complex than version A, the speed
of version C remains the same. Therefore, it is sufficient to use version A for
K=6 and 8, and version B for K=10 and 12 and exclude special implementa-
tions for N, that are even but not divisible by four.

6 Conclusions

The paper discusses a number of implementations of Discrete Wavelet
Transform written as a formula (2). The experimental results show that ma-
nually optimized C++, with unfolded inner loop and inline assembly code
with SSE extensions, is about 10 times more robust than reference program
written in pure C++. What is more, the obtained speedup looks favorably,
comparing to the results shown in [14] where the SSE enabled code was per-
formed 6x faster than naïve, C++ implementation of the convolution algo-
rithm.

Although it is possible to achieve even further speedup with the applica-
tion of the thread level parallelism of contemporary multi-core processors, the
necessary algorithms are considerably more complicated. Hence, the proposed
solution that use only Data Level Parallelism with SSE extensions is an attrac-
tive alternative, available even on a simple one core processors.

Due to the lower complexity of versions A and B, they are recommended
as effective templates for computation of DWT with application of SSE.

References

1. Zieliński T. P.,2009,Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań,
WKŁ, Warszawa

2. Fleet P. J.: 2008, Discrete wavelet transformations: An elementary Approach
with applications, John Wiley&Sons, New Jersey.

3. Strang G., Nguyen T., 1999,Wavelets and filter banks, Wellesley-Cambridge
Press.

4. Lipiński P.,2011,Watermarking software in practical applications, Bulletin of
Polish Academy of Sciences: Technical Sciences, Vol. 59, nr 1, pp. 21-25.

Łyszkowski T., Wiechno T., Yatsymirskyy M.

135

5. Cooklev T., 2006,An efficient architecture for orthogonal wavelet transforms,
IEEE Signal processing letters, Vol. 13, nr 2, pp. 77-79.

6. Olkkonen J. T., Olkkonen H., 2007,Discrete lattice wavelet transform, IEEE
Transactions on circuits and systems – II: Express briefs, Vol. 54, nr 1, pp. 71-
75.

7. Daubechies I., Sweldens W., 1998,Factoring Wavelet Transform into Lifting
Steps, The Journal of Fourier Analysis and Applications, Vol. 4, nr 3, pp. 245-
267.

8. Denk T. C., Parhi K. K., 1997,VLSI architectures for lattice structure based
orthonormal discrete wavelet transforms, IEEE Transactions on circuits and
systems – II: Analog and digital signal processing, Vol. 44, nr 2, pp. 129-132.

9. Bernabe G., Garcia J. M., Gonzalez J., 2003,Reducing 3D Wavelet Transform
Execution Time through the Streaming SIMD Extensions, IEEE Computer
Society, Proceedings of the Eleventh Euromicro Conference on Parallel,
Distributed and Network-Based Processing, pp. 209-223

10. ShahbahramiA., Juurlink B., Vassiliadis S., 2008,Implementing the 2-D Wavelet
Transform on SIMD-Enhanced General-Purpose processors, IEEE Transactions
on multimedia, Vol. 10, nr 1, pp. 43-51.

11. Yatsymirskyy M., 2011,Nowy model macierzowy dwukanałowego banku
biortogonalnych filtrów, Metody Informatyki Stosowanej, nr 1/2011 (26),
Polska Akademia Nauk Oddział w Gdańsku, Komisja Informatyki, pp. 205-212.

12. Yatsymirskyy M.,Stokfiszewski K., 2012, Effectiveness of Lattice Factorization
of Two-Channel Orthogonal Filter Banks, New Trends in Audio and Video/
Signal Processing Algorithms, Architectures, Arrangements and Applications,
27-29 September, Łódź, pp. 275-279.

13. Intel® 64 and IA-32 Architectures. Software Developer's Manual, Volume 1:
Basic Architecture.

14. Gomersall H., 2012, Speedy fast 1D convolution with SSE,
http://hgomersall.wordpress.com/2012/11/02/speedy-fast-1d-convolution-with-
sse/

137

EQUIVALENCE IN JAVA AND CLOJURE, DESIGN AND
IMPLEMENTATION CONSIDERATIONS

Konrad Grzanek

IT Institute, University of Social Sciences
9 Sienkiewicza St., 90-113 Łódź, Poland
kgrzanek@spoleczna.pl, kongra@gmail.com

Abstract
Immutability and the functional programming style demand an extensible and
generic approach in the domain of semantic and structural equivalence testing.
The lack of a library or a framework offering such functionality for Clojure
programming language led to some design and implementation efforts that this
article undertakes to describe. Incidentally it tries to gather and present a
collection of most severe mistakes that may be made by a programmer that
attempts to test objects of various kinds for their equivalence, both in Clojure
and the underlying Java run-time with it's standard library, showing simple yet
usable ways to avoid them.

Key words: Equivalence testing, semantics, identity, functional programming,
Clojure

1 Introduction

Growing multitasking programming needs and the popularity of functional
programming style brought the notions of immutability and state to the fore-
front of elements a software engineer must think of when designing and im-
plementing modern software systems. Immutable objects that are commonly
associated with mathematical models of the real world make the structural
equality a default choice, in the opposition to the explicitly expressed equali-
ty, based on an explicit identifier, physical memory location etc., that must be
used under an assumption of the always present change. Additionally and in a
resulting way, duck typing (see e. g. [1]) is a programming means of abstrac-
tion of a growing importance at least in some kinds of systems. This goes in
an analogous ways in an opposition to the tag-based typing. Unfortunately,
the state of the art in programming languages, even the most advanced ones is
not an optimal one when talking about the objects' identity and structural
equivalence. The paper gives an overview of these problems and tries to

137

EQUIVALENCE IN JAVA AND CLOJURE, DESIGN AND
IMPLEMENTATION CONSIDERATIONS

Konrad Grzanek

IT Institute, University of Social Sciences
9 Sienkiewicza St., 90-113 Łódź, Poland
kgrzanek@spoleczna.pl, kongra@gmail.com

Abstract
Immutability and the functional programming style demand an extensible and
generic approach in the domain of semantic and structural equivalence testing.
The lack of a library or a framework offering such functionality for Clojure
programming language led to some design and implementation efforts that this
article undertakes to describe. Incidentally it tries to gather and present a
collection of most severe mistakes that may be made by a programmer that
attempts to test objects of various kinds for their equivalence, both in Clojure
and the underlying Java run-time with it's standard library, showing simple yet
usable ways to avoid them.

Key words: Equivalence testing, semantics, identity, functional programming,
Clojure

1 Introduction

Growing multitasking programming needs and the popularity of functional
programming style brought the notions of immutability and state to the fore-
front of elements a software engineer must think of when designing and im-
plementing modern software systems. Immutable objects that are commonly
associated with mathematical models of the real world make the structural
equality a default choice, in the opposition to the explicitly expressed equali-
ty, based on an explicit identifier, physical memory location etc., that must be
used under an assumption of the always present change. Additionally and in a
resulting way, duck typing (see e. g. [1]) is a programming means of abstrac-
tion of a growing importance at least in some kinds of systems. This goes in
an analogous ways in an opposition to the tag-based typing. Unfortunately,
the state of the art in programming languages, even the most advanced ones is
not an optimal one when talking about the objects' identity and structural
equivalence. The paper gives an overview of these problems and tries to

Equivalence In Java And Clojure...

138

present a generalized solution based on some solid abstractions. Then the
important implementation details of an identity framework for Clojure is pre-
sented.

2 Reference Types Equivalence Problems

If we assume a concentration on the structural equivalence issues, then the
lack of a generalized and extensible solution to the problem of both in Java
and Clojure is apparent. These two languages are mentioned here for the fol-
lowing four reasons:
1. Java is a typical, strongly and statically typed programming language [2],

very representative for a class of languages used widely nowadays and
known as the object-oriented ones. The default identity is the memory lo-
cation-based one.

2. There are multiple reasons why implementing a non-default identity crite-
ria by overriding the java.lang.Object equals and hashCode methods is
hard and error-prone [3, 4]. Taking a detailed look at these mechanisms
and problems laying there is beyond the scope of this article, but will be
presented elsewhere in the future works.

3. Clojure is a modern functional language [5, 6], supporting immutability
and using Software Transactional Memory where the explicit state must
be used to achieve a desired functionality. Clojure is strongly typed but in
an opposition to Java it lacks static type-checking and uses duck-typing
where possible.

4. The two languages both run on top of the JVM, Clojure shares Java libra-
ries and is capable to run an arbitrary Java code, on the other hand embed-
ding Clojure run-time in a Java application is an easy task. One can say
these languages are related worlds despite the fundamental stylish and typ-
ing differences between them.

Clojure standard library as well as some run-time elements support struc-

tural equivalence with respect to collections, in particular. Sequences (vectors,
lists), sets and associative collections (maps, records) all exhibit support for
deep, structural comparison. Unfortunately, this support is not extensible. Yes,
a presence of some interfaces suggests that the mechanisms are capable of
being extended, but:
- There are some implementation details that effectively block extending

the run-time abstractions with custom classes, written either in Clojure
(records, types) or Java (classes). An example of this is introducing a new

Grzanek. K.

139

composite numeric type, like a Complex number1. The new non-atomic
numeric type does not fit into Clojure equivalence mechanisms for num-
bers and there is no way to solve this problem without making significant
changes to the core of the language.

- The situation gets disclosed when trying to integrate an existing any
computational library into the Clojure based system.

- Even if there were no barriers described above, using the default inter-
face-based abstractions is impossible on already written types (Java
classes in particular). Using AOP as described by Kiczales [7] is not an
elegant nor easily accessible solution here.

All these problems are easily solvable with use of Clojure protocols [6],

but currently there are no libraries of this kind. This is a very important pre-
mise that influenced creating a universal solution described in this article.

3 Equivalence of Numeric Values – Quirks and Corner Cases

Problems described in the previous section expand onto the primitive
types, their values as well as their boxed counterparts. To focus our considera-
tions, the general contract for equality and hashing must be provided to the
reader. Java Language Specification [2] as well as some other resources [8]
say that equals method implements an equivalence relation. It is:
- Reflexive: For any non-null reference value x, x.equals(x) must return true.
- Symmetric: For any non-null reference values x and y, x.equals(y) must

return true if and only if y.equals(x) returns true.
- Transitive: For any non-null reference values x, y, z, if x.equals(y) returns

true and y.equals(z) returns true, then x.equals(z) must return true.
- Consistent: For any non-null reference values x and y, multiple invocations

of x.equals(y) consistently return true or consistently return false, provided
no information used in equals comparisons on the objects is modified.

- For any non-null reference value x, x.equals(null) must return false.

For the hashCode method, the following set of constraints applies:
- Whenever it is invoked on the same object more than once during an ex-

ecution of an application, the hashCode method must consistently return
the same integer, provided no information used in equals comparisons on
the object is modified. This integer need not remain consistent from one
execution of an application to another execution of the same application.

1 Complex numbers are not present in Clojure by default. ANSI Common Lisp ([9]) supports

them.

Equivalence In Java And Clojure...

138

present a generalized solution based on some solid abstractions. Then the
important implementation details of an identity framework for Clojure is pre-
sented.

2 Reference Types Equivalence Problems

If we assume a concentration on the structural equivalence issues, then the
lack of a generalized and extensible solution to the problem of both in Java
and Clojure is apparent. These two languages are mentioned here for the fol-
lowing four reasons:
1. Java is a typical, strongly and statically typed programming language [2],

very representative for a class of languages used widely nowadays and
known as the object-oriented ones. The default identity is the memory lo-
cation-based one.

2. There are multiple reasons why implementing a non-default identity crite-
ria by overriding the java.lang.Object equals and hashCode methods is
hard and error-prone [3, 4]. Taking a detailed look at these mechanisms
and problems laying there is beyond the scope of this article, but will be
presented elsewhere in the future works.

3. Clojure is a modern functional language [5, 6], supporting immutability
and using Software Transactional Memory where the explicit state must
be used to achieve a desired functionality. Clojure is strongly typed but in
an opposition to Java it lacks static type-checking and uses duck-typing
where possible.

4. The two languages both run on top of the JVM, Clojure shares Java libra-
ries and is capable to run an arbitrary Java code, on the other hand embed-
ding Clojure run-time in a Java application is an easy task. One can say
these languages are related worlds despite the fundamental stylish and typ-
ing differences between them.

Clojure standard library as well as some run-time elements support struc-

tural equivalence with respect to collections, in particular. Sequences (vectors,
lists), sets and associative collections (maps, records) all exhibit support for
deep, structural comparison. Unfortunately, this support is not extensible. Yes,
a presence of some interfaces suggests that the mechanisms are capable of
being extended, but:
- There are some implementation details that effectively block extending

the run-time abstractions with custom classes, written either in Clojure
(records, types) or Java (classes). An example of this is introducing a new

Grzanek. K.

139

composite numeric type, like a Complex number1. The new non-atomic
numeric type does not fit into Clojure equivalence mechanisms for num-
bers and there is no way to solve this problem without making significant
changes to the core of the language.

- The situation gets disclosed when trying to integrate an existing any
computational library into the Clojure based system.

- Even if there were no barriers described above, using the default inter-
face-based abstractions is impossible on already written types (Java
classes in particular). Using AOP as described by Kiczales [7] is not an
elegant nor easily accessible solution here.

All these problems are easily solvable with use of Clojure protocols [6],

but currently there are no libraries of this kind. This is a very important pre-
mise that influenced creating a universal solution described in this article.

3 Equivalence of Numeric Values – Quirks and Corner Cases

Problems described in the previous section expand onto the primitive
types, their values as well as their boxed counterparts. To focus our considera-
tions, the general contract for equality and hashing must be provided to the
reader. Java Language Specification [2] as well as some other resources [8]
say that equals method implements an equivalence relation. It is:
- Reflexive: For any non-null reference value x, x.equals(x) must return true.
- Symmetric: For any non-null reference values x and y, x.equals(y) must

return true if and only if y.equals(x) returns true.
- Transitive: For any non-null reference values x, y, z, if x.equals(y) returns

true and y.equals(z) returns true, then x.equals(z) must return true.
- Consistent: For any non-null reference values x and y, multiple invocations

of x.equals(y) consistently return true or consistently return false, provided
no information used in equals comparisons on the objects is modified.

- For any non-null reference value x, x.equals(null) must return false.

For the hashCode method, the following set of constraints applies:
- Whenever it is invoked on the same object more than once during an ex-

ecution of an application, the hashCode method must consistently return
the same integer, provided no information used in equals comparisons on
the object is modified. This integer need not remain consistent from one
execution of an application to another execution of the same application.

1 Complex numbers are not present in Clojure by default. ANSI Common Lisp ([9]) supports

them.

Equivalence In Java And Clojure...

140

- If two objects are equal according to the equals(Object) method, then call-
ing the hashCode method on each of the two objects must produce the
same integer result.

- It is not required that if two objects are unequal according to the
equals(Object) method, then calling the hashCode method on each of the
two objects must produce distinct integer results. However, the program-
mer should be aware that producing distinct integer results for unequal ob-
jects may improve the performance of hash tables.

Neither the Java primitives2 nor the derivatives of java.lang.Number pos-

sess the semantically correct implementations of equivalence mechanisms as a
whole. Saying “semantically correct” we mean a correct behavior of the prop-
er methods and operators with respect to Liskov substitution principle [10].
Moreover, using some values of these types lead to surprising results, espe-
cially the floating-point values representation in Java3 causes real headaches
when attempting to implement solid numeric codes.

The rest of this section is an attempt to present a catalog of semantically
incorrect behaviors of numeric values. All examples are given in Clojure, and
so we focus on boxed types rather than the primitive ones. We also use clo-
jure.core/= and clojure.core/hash-code operators instead of calling equals
and hashCode explicitly4.

There are the most important examples of malfunctioning equivalence in
Clojure and Java:
- Erroneous floats equivalence, both in primitive type values and in the

boxed ones. Example:

> (= (float 1.234) 1.234)
false

> (hash 1.234)
-146307282

> (hash (float 1.234))
1067316150

This turns out to be eventually a conversion problem between floats and
doubles, because when applying clojure.core/= operator the Clojure run-time

2 In the case of primitives we mean the == operator in Java, not the equals/hashCode com-

plementary set of methods that apply only for reference types.
3 And all languages with standard IEEE 754 ([11]) floating-point representation.
4 The reader familiar with Clojure should be aware that these operators semantically wrap

equals and hashCode.

Grzanek K.

169

All the following source code examples assume the following Clojure
name-space context:

(ns kongra.behavior
 (:refer-clojure :exclude [rand])

 (:use [kongra.core])
 (:require [clojure.set :as CSET]
 [clojure.math.combinatorics :as CMCOMB]

 [kongra.behavior :as B]
 [kongra.identity :as ID]
 [kongra.fressian :as FRESS]))

The operator cat concatenates given arguments collections. It's internal
workings are based on using the standard clojure.core/apply procedure:

(defn cat
 [& colls]
 (->> colls
 (apply concat)

 (with-correctness1 (apply correctness1 colls))))

In a Clojure REPL one could execute the following and observe the re-
sults2 of using cat:

> (cat [1 2 3 4] [[:a :b] [:c :d]])
(1 2 3 4 [:a :b] [:c :d])

When generating arguments by matching together single values from the
passed sequences of values one can zip the sequences together:

(defn zip
 [& colls]
 (->> colls
 (apply map vector)
 (with-correctness (apply correctness colls))))

and the following occurs:
> (zip [1 2 3 4] [[:a :b] [:c :d]])
([1 [:a :b]]
 [2 [:c :d]])

1 For arguments' and arguments collections' correctness, please go to section 5 of this paper.
2 All procedures described in this section produce lazily evaluated results.

Equivalence In Java And Clojure...

140

- If two objects are equal according to the equals(Object) method, then call-
ing the hashCode method on each of the two objects must produce the
same integer result.

- It is not required that if two objects are unequal according to the
equals(Object) method, then calling the hashCode method on each of the
two objects must produce distinct integer results. However, the program-
mer should be aware that producing distinct integer results for unequal ob-
jects may improve the performance of hash tables.

Neither the Java primitives2 nor the derivatives of java.lang.Number pos-

sess the semantically correct implementations of equivalence mechanisms as a
whole. Saying “semantically correct” we mean a correct behavior of the prop-
er methods and operators with respect to Liskov substitution principle [10].
Moreover, using some values of these types lead to surprising results, espe-
cially the floating-point values representation in Java3 causes real headaches
when attempting to implement solid numeric codes.

The rest of this section is an attempt to present a catalog of semantically
incorrect behaviors of numeric values. All examples are given in Clojure, and
so we focus on boxed types rather than the primitive ones. We also use clo-
jure.core/= and clojure.core/hash-code operators instead of calling equals
and hashCode explicitly4.

There are the most important examples of malfunctioning equivalence in
Clojure and Java:
- Erroneous floats equivalence, both in primitive type values and in the

boxed ones. Example:

> (= (float 1.234) 1.234)
false

> (hash 1.234)
-146307282

> (hash (float 1.234))
1067316150

This turns out to be eventually a conversion problem between floats and
doubles, because when applying clojure.core/= operator the Clojure run-time

2 In the case of primitives we mean the == operator in Java, not the equals/hashCode com-

plementary set of methods that apply only for reference types.
3 And all languages with standard IEEE 754 ([11]) floating-point representation.
4 The reader familiar with Clojure should be aware that these operators semantically wrap

equals and hashCode.

Grzanek K.

169

All the following source code examples assume the following Clojure
name-space context:

(ns kongra.behavior
 (:refer-clojure :exclude [rand])

 (:use [kongra.core])
 (:require [clojure.set :as CSET]
 [clojure.math.combinatorics :as CMCOMB]

 [kongra.behavior :as B]
 [kongra.identity :as ID]
 [kongra.fressian :as FRESS]))

The operator cat concatenates given arguments collections. It's internal
workings are based on using the standard clojure.core/apply procedure:

(defn cat
 [& colls]
 (->> colls
 (apply concat)

 (with-correctness1 (apply correctness1 colls))))

In a Clojure REPL one could execute the following and observe the re-
sults2 of using cat:

> (cat [1 2 3 4] [[:a :b] [:c :d]])
(1 2 3 4 [:a :b] [:c :d])

When generating arguments by matching together single values from the
passed sequences of values one can zip the sequences together:

(defn zip
 [& colls]
 (->> colls
 (apply map vector)
 (with-correctness (apply correctness colls))))

and the following occurs:
> (zip [1 2 3 4] [[:a :b] [:c :d]])
([1 [:a :b]]
 [2 [:c :d]])

1 For arguments' and arguments collections' correctness, please go to section 5 of this paper.
2 All procedures described in this section produce lazily evaluated results.

Automated Procedure Behavior ...

170

As you can see, the related (with respect to the same position) components
of passed streams are combined to form new arguments and later placed in a
resulting stream. The zip operator has it's variadic version called vzip:

(defn vzip
 [& colls]
 (->> colls
 (apply map #(concat (butlast %&) (last %&)))
 (with-correctness (apply correctness colls))))

that produces a slightly different result when applied to the same set of data:

> (vzip [1 2 3 4] [[:a :b] [:c :d]])
((1 :a :b)
 (2 :c :d))

The vzip operator may be especially useful when creating streams of ar-
guments to test procedures with variadic arities.

To combine every element of all arguments collections with one another
one must use the Cartesian product prod:

(defn prod
 [& colls]
 (->> colls
 (apply CMCOMB/cartesian-product)
 (with-correctness (apply correctness colls))))

or it's “variadic” counterpart – vprod:

(defn vprod
 [& colls]
 (->> colls
 (apply B/prod)
 (map #(concat (butlast %) (last %)))
 (with-correctness (apply correctness colls))))

The two operators give results as follows:
> (prod [1 2 3 4] [[:a :b] [:c :d]])
((1 [:a :b])
 (1 [:c :d])
 (2 [:a :b])
 (2 [:c :d])
 (3 [:a :b])
 (3 [:c :d])
 (4 [:a :b])
 (4 [:c :d]))

Grzanek K.

171

> (vprod [1 2 3 4] [[:a :b] [:c :d]])
((1 :a :b)
 (1 :c :d)
 (2 :a :b)
 (2 :c :d)
 (3 :a :b)
 (3 :c :d)
 (4 :a :b)
 (4 :c :d))

These are the key arguments collections (streams) manipulating argu-
ments. Among the arguments generators the most important ones are those
which generate a stream of variable arity arguments sets:

(defn vargs
 [coll]
 (->> coll count inc range
 (map #(take % coll))
 (with-correctness (correctness coll))))

> (vargs [1 2 3 4])
(()
 (1)
 (1 2)
 (1 2 3)
 (1 2 3 4))

The vargs operator takes an example arguments vector and generates an
arguments collection (stream, coll of arguments) with variable arguments
vector size, as presented above. Similarly, vmaps:

(defn vmaps
 [keyvals]
 (assert (even? (count keyvals)))
 (->> keyvals
 (partition 2) ;; all possible entries
 powerset ;; all possible subsets
 (map #(apply hash-map (apply concat %)))
 (with-correctness (correctness keyvals))))

produces a stream of maps (associative collections) with all possible “arities”
of map entries:
> (vmaps [:a 1 :b 2])
({}
 {:a 1}
 {:b 2}
 {:a 1, :b 2})

Automated Procedure Behavior ...

170

As you can see, the related (with respect to the same position) components
of passed streams are combined to form new arguments and later placed in a
resulting stream. The zip operator has it's variadic version called vzip:

(defn vzip
 [& colls]
 (->> colls
 (apply map #(concat (butlast %&) (last %&)))
 (with-correctness (apply correctness colls))))

that produces a slightly different result when applied to the same set of data:

> (vzip [1 2 3 4] [[:a :b] [:c :d]])
((1 :a :b)
 (2 :c :d))

The vzip operator may be especially useful when creating streams of ar-
guments to test procedures with variadic arities.

To combine every element of all arguments collections with one another
one must use the Cartesian product prod:

(defn prod
 [& colls]
 (->> colls
 (apply CMCOMB/cartesian-product)
 (with-correctness (apply correctness colls))))

or it's “variadic” counterpart – vprod:

(defn vprod
 [& colls]
 (->> colls
 (apply B/prod)
 (map #(concat (butlast %) (last %)))
 (with-correctness (apply correctness colls))))

The two operators give results as follows:
> (prod [1 2 3 4] [[:a :b] [:c :d]])
((1 [:a :b])
 (1 [:c :d])
 (2 [:a :b])
 (2 [:c :d])
 (3 [:a :b])
 (3 [:c :d])
 (4 [:a :b])
 (4 [:c :d]))

Grzanek K.

171

> (vprod [1 2 3 4] [[:a :b] [:c :d]])
((1 :a :b)
 (1 :c :d)
 (2 :a :b)
 (2 :c :d)
 (3 :a :b)
 (3 :c :d)
 (4 :a :b)
 (4 :c :d))

These are the key arguments collections (streams) manipulating argu-
ments. Among the arguments generators the most important ones are those
which generate a stream of variable arity arguments sets:

(defn vargs
 [coll]
 (->> coll count inc range
 (map #(take % coll))
 (with-correctness (correctness coll))))

> (vargs [1 2 3 4])
(()
 (1)
 (1 2)
 (1 2 3)
 (1 2 3 4))

The vargs operator takes an example arguments vector and generates an
arguments collection (stream, coll of arguments) with variable arguments
vector size, as presented above. Similarly, vmaps:

(defn vmaps
 [keyvals]
 (assert (even? (count keyvals)))
 (->> keyvals
 (partition 2) ;; all possible entries
 powerset ;; all possible subsets
 (map #(apply hash-map (apply concat %)))
 (with-correctness (correctness keyvals))))

produces a stream of maps (associative collections) with all possible “arities”
of map entries:
> (vmaps [:a 1 :b 2])
({}
 {:a 1}
 {:b 2}
 {:a 1, :b 2})

Automated Procedure Behavior ...

172

To produce a testing collection for the procedures with formal parameters
of type 4 – the variable arity arglists with maps playing the role of keyword
arguments carriage, a simple mapargs may be used:

(defn mapargs
 [m]
 (->> m
 (apply concat)
 (with-correctness (correctness m))))

> (mapargs {:a 1 :b 2})
(:a 1 :b 2)

together with a vmapargs operator:

(defn vmapargs
 [keyvals]
 (assert (even? (count keyvals)))
 (->> keyvals
 (partition 2) ;; all possible entries
 powerset ;; all possible subsets
 (map #(apply concat %))
 (with-correctness (correctness keyvals))))

> (vmapargs [:a 1 :b 2])
(()
 (:a 1)
 (:b 2)
 (:a 1 :b 2))

that works almost like vmaps, but converts any generated map into a flat-
tened sequence of key-value pairs (map entries).

Finally the two following operators: powargs and permargs use power-sets
and permutations to generate proper arguments collections:

(defn powargs
 [coll]
 (->> coll
 powerset
 (with-correctness (correctness coll))))

> (powargs [1 2 3])
(() (1) (2) (1 2) (3) (1 3) (2 3) (1 2 3))

(defn permargs
 [coll]
 (->> coll

Grzanek K.

173

 CMCOMB/permutations
 (with-correctness (correctness coll))))

> (permargs [1 2 3])
([1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1])

5 The Correctness Abstraction

The correctness is an enumerated type with an integral code field:
(deftype ^:private Correctness
 [name code]

 java.lang.Object
 (toString [this] name))

Besides the correctness levels mentioned earlier there is also a COR-
RECTNESS-UNDEFINED. The enumeration values go as follows:

(def CORRECTNESS-UNDEFINED
 (Correctness. "CORRECTNESS-UNDEFINED" (byte 0)))
(def NON-BORDER
 (Correctness. "NON-BORDER" (byte 1)))
(def BORDER
 (Correctness. "BORDER" (byte 2)))
(def PARTIALLY-CORRECT
 (Correctness. "PARTIALLY-CORRECT" (byte 3)))
(def INCORRECT
 (Correctness. "INCORRECT" (byte 4)))

and the correctness of a collection of objects is the maximum correctness of
the elements of the collection:

(defn- max-correctness
 ([c] c)
 ([c d]
 (if (> (.longValue ^Number (.code ^Correctness c))
 (.longValue ^Number (.code ^Correctness d)))
 c d))

 ([c d & more]
 (reduce max-correctness
 (max-correctness c d)
 more)))

Automated Procedure Behavior ...

172

To produce a testing collection for the procedures with formal parameters
of type 4 – the variable arity arglists with maps playing the role of keyword
arguments carriage, a simple mapargs may be used:

(defn mapargs
 [m]
 (->> m
 (apply concat)
 (with-correctness (correctness m))))

> (mapargs {:a 1 :b 2})
(:a 1 :b 2)

together with a vmapargs operator:

(defn vmapargs
 [keyvals]
 (assert (even? (count keyvals)))
 (->> keyvals
 (partition 2) ;; all possible entries
 powerset ;; all possible subsets
 (map #(apply concat %))
 (with-correctness (correctness keyvals))))

> (vmapargs [:a 1 :b 2])
(()
 (:a 1)
 (:b 2)
 (:a 1 :b 2))

that works almost like vmaps, but converts any generated map into a flat-
tened sequence of key-value pairs (map entries).

Finally the two following operators: powargs and permargs use power-sets
and permutations to generate proper arguments collections:

(defn powargs
 [coll]
 (->> coll
 powerset
 (with-correctness (correctness coll))))

> (powargs [1 2 3])
(() (1) (2) (1 2) (3) (1 3) (2 3) (1 2 3))

(defn permargs
 [coll]
 (->> coll

Grzanek K.

173

 CMCOMB/permutations
 (with-correctness (correctness coll))))

> (permargs [1 2 3])
([1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1])

5 The Correctness Abstraction

The correctness is an enumerated type with an integral code field:
(deftype ^:private Correctness
 [name code]

 java.lang.Object
 (toString [this] name))

Besides the correctness levels mentioned earlier there is also a COR-
RECTNESS-UNDEFINED. The enumeration values go as follows:

(def CORRECTNESS-UNDEFINED
 (Correctness. "CORRECTNESS-UNDEFINED" (byte 0)))
(def NON-BORDER
 (Correctness. "NON-BORDER" (byte 1)))
(def BORDER
 (Correctness. "BORDER" (byte 2)))
(def PARTIALLY-CORRECT
 (Correctness. "PARTIALLY-CORRECT" (byte 3)))
(def INCORRECT
 (Correctness. "INCORRECT" (byte 4)))

and the correctness of a collection of objects is the maximum correctness of
the elements of the collection:

(defn- max-correctness
 ([c] c)
 ([c d]
 (if (> (.longValue ^Number (.code ^Correctness c))
 (.longValue ^Number (.code ^Correctness d)))
 c d))

 ([c d & more]
 (reduce max-correctness
 (max-correctness c d)
 more)))

Automated Procedure Behavior ...

174

Correctness of an object may be specified explicitly by setting a proper as-
sociation in it's meta-data or implicitly, by using an indicator function imple-
mented as a Clojure protocol method:

(defprotocol WithImplicitCorrectness
 (^:private implicit-correctness [this]))
(defn correctness
 ([obj]
 (or (::correctness (meta obj))
 (implicit-correctness obj)))

 ([obj & rest]
 (apply max-correctness
 (correctness obj)
 (map correctness rest))))

Finally the correctness may be applied to an ob-
ject explicitly with:

(defn with-correctness
 [c obj]
 (vary-meta obj assoc ::correctness c))

The latter approach is used in all arguments manipulation routines.

6 Implicit Correctness for Some Known Types and Values

The framework described here introduces implicit correctness as a prede-
fined set of procedures. In a conventional, imperative language with a static
type system, like Ada or Java, achieving such functionality involves a signifi-
cant change(s) in a standard library, as one needs to define a set of polymor-
phic3 procedures dispatched on the types belonging to a standard library of the
host language. Thankfully in Clojure we have protocols that are perfect means
to implement the extension points for the desired functionality.

The implicit correctness of a sequential collection is the aggregate correct-
ness of it's elements or a BORDER correctness if the collection is empty:

(defn- implicit-seq-correctness
 [coll]
 (if-let [s (seq coll)]
 (apply correctness s)
 ;; an empty sequence is intentionally qualified
 ;; as a BORDER one
 BORDER))

3 With an inclusive polymorphism as described by L. Cardelli [16]

Grzanek K.

175

For integrals we define 0, -1, 1, the maximum and minimum values as
those having the BORDER correctness level and assign NON-BORDER to
any others:

(defn- implicit-integral-correctness
 [^Number x ^Number min ^Number max]
 (let [x (.longValue x)]
 (if (or (= x (.longValue min))
 (= x (.longValue max))
 (= x 0)
 (= x 1)
 (= x -1))
 BORDER
 NON-BORDER)))

A similar approach applies to primitive floating-point values (ja-
va.lang.Float and java.lang.Double both in Java and in Clojure). Additional-
ly the infinite and NaN (Not-a-Number) values must be considered here.

(defn- implicit-double-correctness
 [^Double x]
 (let [d (.doubleValue x)]
 (if (or (Double/isNaN d)
 (Double/isInfinite d)
 (= d Double/MAX_VALUE)
 (= d Double/MIN_NORMAL)
 (= d Double/MIN_VALUE)
 (= d 0.0)
 (= d 1.0)
 (= d -1.0))
 BORDER
 NON-BORDER)))

And then there is the protocol named WithImplicitCorrectness. Apart
from the fact that it allows do implement all predefined out-of-the-box cor-
rectness values in the framework itself, it also gives the programmer a handle
to define his own correctness assignments for types that will exist in the fu-
ture:

(defprotocol WithImplicitCorrectness
 (implicit-correctness [this]))

The protocol when applied to collections uses the implicit-seq-correctness
procedure, as defined earlier in this section. One exception is the pair (a type
named kongra.core.Pair), but it does not differ much in the semantics when
compared to the mentioned implementation procedure:

Automated Procedure Behavior ...

174

Correctness of an object may be specified explicitly by setting a proper as-
sociation in it's meta-data or implicitly, by using an indicator function imple-
mented as a Clojure protocol method:

(defprotocol WithImplicitCorrectness
 (^:private implicit-correctness [this]))
(defn correctness
 ([obj]
 (or (::correctness (meta obj))
 (implicit-correctness obj)))

 ([obj & rest]
 (apply max-correctness
 (correctness obj)
 (map correctness rest))))

Finally the correctness may be applied to an ob-
ject explicitly with:

(defn with-correctness
 [c obj]
 (vary-meta obj assoc ::correctness c))

The latter approach is used in all arguments manipulation routines.

6 Implicit Correctness for Some Known Types and Values

The framework described here introduces implicit correctness as a prede-
fined set of procedures. In a conventional, imperative language with a static
type system, like Ada or Java, achieving such functionality involves a signifi-
cant change(s) in a standard library, as one needs to define a set of polymor-
phic3 procedures dispatched on the types belonging to a standard library of the
host language. Thankfully in Clojure we have protocols that are perfect means
to implement the extension points for the desired functionality.

The implicit correctness of a sequential collection is the aggregate correct-
ness of it's elements or a BORDER correctness if the collection is empty:

(defn- implicit-seq-correctness
 [coll]
 (if-let [s (seq coll)]
 (apply correctness s)
 ;; an empty sequence is intentionally qualified
 ;; as a BORDER one
 BORDER))

3 With an inclusive polymorphism as described by L. Cardelli [16]

Grzanek K.

175

For integrals we define 0, -1, 1, the maximum and minimum values as
those having the BORDER correctness level and assign NON-BORDER to
any others:

(defn- implicit-integral-correctness
 [^Number x ^Number min ^Number max]
 (let [x (.longValue x)]
 (if (or (= x (.longValue min))
 (= x (.longValue max))
 (= x 0)
 (= x 1)
 (= x -1))
 BORDER
 NON-BORDER)))

A similar approach applies to primitive floating-point values (ja-
va.lang.Float and java.lang.Double both in Java and in Clojure). Additional-
ly the infinite and NaN (Not-a-Number) values must be considered here.

(defn- implicit-double-correctness
 [^Double x]
 (let [d (.doubleValue x)]
 (if (or (Double/isNaN d)
 (Double/isInfinite d)
 (= d Double/MAX_VALUE)
 (= d Double/MIN_NORMAL)
 (= d Double/MIN_VALUE)
 (= d 0.0)
 (= d 1.0)
 (= d -1.0))
 BORDER
 NON-BORDER)))

And then there is the protocol named WithImplicitCorrectness. Apart
from the fact that it allows do implement all predefined out-of-the-box cor-
rectness values in the framework itself, it also gives the programmer a handle
to define his own correctness assignments for types that will exist in the fu-
ture:

(defprotocol WithImplicitCorrectness
 (implicit-correctness [this]))

The protocol when applied to collections uses the implicit-seq-correctness
procedure, as defined earlier in this section. One exception is the pair (a type
named kongra.core.Pair), but it does not differ much in the semantics when
compared to the mentioned implementation procedure:

Automated Procedure Behavior ...

176

(extend-protocol WithImplicitCorrectness
 ;; SEQUENTIAL COLLECTIONS
 clojure.lang.Sequential
 (implicit-correctness [this]
 (implicit-seq-correctness this))
 java.util.List
 (implicit-correctness [this]
 (implicit-seq-correctness this))
 kongra.core.Pair
 (implicit-correctness [this]
 (correctness (.first this) (.second this)))
 ;; SETS
 java.util.Set
 (implicit-correctness [this]
 (implicit-seq-correctness this))

Associative containers (maps) have their correctness defined as an aggre-
gate correctness of all keys and values:

 ;; MAPS (INCLUDING RECORDS)
 java.util.Map
 (implicit-correctness [this]
 (if-let [entries (seq this)]
 (implicit-seq-correctness (apply concat entries))
 ;; an empty map has a BORDER correctness
 BORDER))

Strings have a BORDER correctness when they are blank (contain only
white-space characters), and NON-BORDER otherwise:

 ;; STRING-LIKE
 java.lang.String
 (implicit-correctness [this]
 ;; a blank string is a BORDER one
 (if (blank? this) BORDER NON-BORDER))

Clojure symbols and keywords “adopt” a similar String-like rule – their
names are checked for being blank:

 clojure.lang.Named ;; symbols, keywords
 (implicit-correctness [this]
 (if (blank? (.getName this)))
 BORDER
 NON-BORDER))

Here is how the implicit integral correctness is being defined in the protocol:

Grzanek K.

177

 ;; INTEGERS
 java.lang.Byte
 (implicit-correctness [this]
 (implicit-integral-correctness this
 Byte/MIN_VALUE
 Byte/MAX_VALUE))

 java.lang.Short
 (implicit-correctness [this]
 (implicit-integral-correctness this
 Short/MIN_VALUE
 Short/MAX_VALUE))

 java.lang.Character
 (implicit-correctness [this]
 (implicit-integral-correctness
 (int this)
 (int Character/MIN_VALUE)
 (int Character/MAX_VALUE)))

 java.lang.Integer
 (implicit-correctness [this]
 (implicit-integral-correctness
 this Integer/MIN_VALUE Integer/MAX_VALUE))

 java.lang.Long
 (implicit-correctness [this]
 (implicit-integral-correctness
 this Long/MIN_VALUE Long/MAX_VALUE))

The big-integer types in Java and in Clojure also “define” 0, -1 and 1 as
their BORDER values. As they do not impose any limits on how the integral
values are allowed to be (the memory and CPU time are the only constraints),
there are no max- or min-values being taken into account:

 ;; BIG INTEGER, BIG INT
 java.math.BigInteger
 (implicit-correctness [this]
 (if (or (.equals this java.math.BigInteger/ZERO)
 (.equals this java.math.BigInteger/ONE)
 (.equals this BIG-INTEGER-MINUS-ONE))
 BORDER
 NON-BORDER))
 clojure.lang.BigInt
 (implicit-correctness [this]
 (if (or (.equals this 0N)
 (.equals this 1N)

Automated Procedure Behavior ...

176

(extend-protocol WithImplicitCorrectness
 ;; SEQUENTIAL COLLECTIONS
 clojure.lang.Sequential
 (implicit-correctness [this]
 (implicit-seq-correctness this))
 java.util.List
 (implicit-correctness [this]
 (implicit-seq-correctness this))
 kongra.core.Pair
 (implicit-correctness [this]
 (correctness (.first this) (.second this)))
 ;; SETS
 java.util.Set
 (implicit-correctness [this]
 (implicit-seq-correctness this))

Associative containers (maps) have their correctness defined as an aggre-
gate correctness of all keys and values:

 ;; MAPS (INCLUDING RECORDS)
 java.util.Map
 (implicit-correctness [this]
 (if-let [entries (seq this)]
 (implicit-seq-correctness (apply concat entries))
 ;; an empty map has a BORDER correctness
 BORDER))

Strings have a BORDER correctness when they are blank (contain only
white-space characters), and NON-BORDER otherwise:

 ;; STRING-LIKE
 java.lang.String
 (implicit-correctness [this]
 ;; a blank string is a BORDER one
 (if (blank? this) BORDER NON-BORDER))

Clojure symbols and keywords “adopt” a similar String-like rule – their
names are checked for being blank:

 clojure.lang.Named ;; symbols, keywords
 (implicit-correctness [this]
 (if (blank? (.getName this)))
 BORDER
 NON-BORDER))

Here is how the implicit integral correctness is being defined in the protocol:

Grzanek K.

177

 ;; INTEGERS
 java.lang.Byte
 (implicit-correctness [this]
 (implicit-integral-correctness this
 Byte/MIN_VALUE
 Byte/MAX_VALUE))

 java.lang.Short
 (implicit-correctness [this]
 (implicit-integral-correctness this
 Short/MIN_VALUE
 Short/MAX_VALUE))

 java.lang.Character
 (implicit-correctness [this]
 (implicit-integral-correctness
 (int this)
 (int Character/MIN_VALUE)
 (int Character/MAX_VALUE)))

 java.lang.Integer
 (implicit-correctness [this]
 (implicit-integral-correctness
 this Integer/MIN_VALUE Integer/MAX_VALUE))

 java.lang.Long
 (implicit-correctness [this]
 (implicit-integral-correctness
 this Long/MIN_VALUE Long/MAX_VALUE))

The big-integer types in Java and in Clojure also “define” 0, -1 and 1 as
their BORDER values. As they do not impose any limits on how the integral
values are allowed to be (the memory and CPU time are the only constraints),
there are no max- or min-values being taken into account:

 ;; BIG INTEGER, BIG INT
 java.math.BigInteger
 (implicit-correctness [this]
 (if (or (.equals this java.math.BigInteger/ZERO)
 (.equals this java.math.BigInteger/ONE)
 (.equals this BIG-INTEGER-MINUS-ONE))
 BORDER
 NON-BORDER))
 clojure.lang.BigInt
 (implicit-correctness [this]
 (if (or (.equals this 0N)
 (.equals this 1N)

Automated Procedure Behavior ...

178

 (.equals this -1N))
 BORDER NON-BORDER))

The same applies to the arbitrary precision floating-point type ja-
va.math.BigDecimal:

 ;; BIG DECIMAL
 java.math.BigDecimal
 (implicit-correctness [this]
 (if (or (BD/= this 0M)
 (BD/= this 1M)
 (BD/= this -1M))
 BORDER
 NON-BORDER))

Due to their nature Clojure rational numbers represented by instances of
clojure.lang.Ratio class [14], [15] are NON-BORDER values:

 ;; RATIO
 clojure.lang.Ratio
 (implicit-correctness [this] NON-BORDER)

Finally the protocol defines the correctness for floats:

 ;; FLOATS
 java.lang.Float
 (implicit-correctness [this]
 (implicit-double-correctness (ID/fldouble this)))

 java.lang.Double
 (implicit-correctness [this]
 (implicit-double-correctness this))

and any other types, including null values (nil in Clojure) have their cor-
rectness undefined:
 ;; OTHERS
 java.lang.Object
 (implicit-correctness [this] CORRECTNESS-UNDEFINED)

 nil
 (implicit-correctness [_] CORRECTNESS-UNDEFINED))

Grzanek K.

179

7 Conclusions and Future Works

The paper presented only a fraction of the whole work needed to fully im-
plement the initial idea. There are the following points that still wait for their
detailed design and implementation:
1. Routines to explicitly specify values with various levels of correctness for

types
2. The results model
3. Behaviors storage
4. Procedures evaluation with the automatically generated collections of ar-

guments
5. Behaviors comparison

The main technical sections of the article concatenated on presenting the

correctness-related mechanisms and the arguments manipulating operators.
When talking about the latter, there is an urge to design and implement an
embedded4 DSL, a kind of a “regular expressions” language to make the
usage of the arguments manipulation operators more effective in use than
simply calling them explicitly. A sketch of an expression of this kind is like:

^:prod [x & ^:vmapargs {:y 1 :z 2}]

where the operators are used within the argist s-expression as a meta-data
(defined with the Clojure keywords). Implementing this functionality is the
first sub-task to be done during the future development activities on the
framework presented here and it will be described in a future paper.

References

1. Koskela L., 2008, Test Driven, Practical TDD and Acceptance TDD for Java
Developers, ISBN 1-932394-85-0, Manning Publications Co

2. E. W. Dijkstra, 1972, The Humble Programmer, ACM Turing Lecture
3. Thomas M., 2003, The Modest Software Engineer, Proc ISADS 2003, pp 169-

174, IEEE Press
4. L. Williams, E. M. Maximilien, M. Vouk, 2003, Test-Driven Development as a

Defect-Reduction Practice, ISSRE '03 Proceedings of the 14th International
Symposium on Software Reliability Engineering, pp. 34

5. 2007, Ada Reference Manual, ISO/IEC 8652:2007(E) Ed. 3
6. Jones S. P., 2003, Haskell 98 language and libraries: the Revised Report, ISBN

0521826144, Cambridge University Press

4 in Clojure as the host language

Automated Procedure Behavior ...

178

 (.equals this -1N))
 BORDER NON-BORDER))

The same applies to the arbitrary precision floating-point type ja-
va.math.BigDecimal:

 ;; BIG DECIMAL
 java.math.BigDecimal
 (implicit-correctness [this]
 (if (or (BD/= this 0M)
 (BD/= this 1M)
 (BD/= this -1M))
 BORDER
 NON-BORDER))

Due to their nature Clojure rational numbers represented by instances of
clojure.lang.Ratio class [14], [15] are NON-BORDER values:

 ;; RATIO
 clojure.lang.Ratio
 (implicit-correctness [this] NON-BORDER)

Finally the protocol defines the correctness for floats:

 ;; FLOATS
 java.lang.Float
 (implicit-correctness [this]
 (implicit-double-correctness (ID/fldouble this)))

 java.lang.Double
 (implicit-correctness [this]
 (implicit-double-correctness this))

and any other types, including null values (nil in Clojure) have their cor-
rectness undefined:
 ;; OTHERS
 java.lang.Object
 (implicit-correctness [this] CORRECTNESS-UNDEFINED)

 nil
 (implicit-correctness [_] CORRECTNESS-UNDEFINED))

Grzanek K.

179

7 Conclusions and Future Works

The paper presented only a fraction of the whole work needed to fully im-
plement the initial idea. There are the following points that still wait for their
detailed design and implementation:
1. Routines to explicitly specify values with various levels of correctness for

types
2. The results model
3. Behaviors storage
4. Procedures evaluation with the automatically generated collections of ar-

guments
5. Behaviors comparison

The main technical sections of the article concatenated on presenting the

correctness-related mechanisms and the arguments manipulating operators.
When talking about the latter, there is an urge to design and implement an
embedded4 DSL, a kind of a “regular expressions” language to make the
usage of the arguments manipulation operators more effective in use than
simply calling them explicitly. A sketch of an expression of this kind is like:

^:prod [x & ^:vmapargs {:y 1 :z 2}]

where the operators are used within the argist s-expression as a meta-data
(defined with the Clojure keywords). Implementing this functionality is the
first sub-task to be done during the future development activities on the
framework presented here and it will be described in a future paper.

References

1. Koskela L., 2008, Test Driven, Practical TDD and Acceptance TDD for Java
Developers, ISBN 1-932394-85-0, Manning Publications Co

2. E. W. Dijkstra, 1972, The Humble Programmer, ACM Turing Lecture
3. Thomas M., 2003, The Modest Software Engineer, Proc ISADS 2003, pp 169-

174, IEEE Press
4. L. Williams, E. M. Maximilien, M. Vouk, 2003, Test-Driven Development as a

Defect-Reduction Practice, ISSRE '03 Proceedings of the 14th International
Symposium on Software Reliability Engineering, pp. 34

5. 2007, Ada Reference Manual, ISO/IEC 8652:2007(E) Ed. 3
6. Jones S. P., 2003, Haskell 98 language and libraries: the Revised Report, ISBN

0521826144, Cambridge University Press

4 in Clojure as the host language

Automated Procedure Behavior ...

180

7. 2008, SPARK 95 - The SPADE Ada 95 Kernel, Praxis High Integrity Systems
Ltd

8. Hevery M., 2008, Guide: Writing Testable Code, http://misko.hevery.com/code-
reviewers-guide/

9. Miller A., 2008, Clojure and testing,
http://tech.puredanger.com/2013/08/31/clojure-and-testing/

10. Sierra S., 2014, API for clojure.test,
http://richhickey.github.io/clojure/clojure.test-api.html

11. Martin M., 2014, Speclj - A TDD/BDD framework for Clojure, http://speclj.com/
12. 2014, Midje Github Repository, https://github.com/marick/Midje
13. 2014, HUnit -- Haskell Unit Testing, http://hunit.sourceforge.net/
14. Halloway S., 2009: Programming Clojure, ISBN: 978-1-93435-633-3, The

Pragmatic Bookshelf
15. Emerick Ch., Carper B., Grand Ch., 2012, Clojure Programming, O'Reilly Me-

dia Inc., ISBN: 978-1-449-39470-7
16. Cardelli L., Wegner P., 1985, On Understanding Types, Data Abstraction and

Polymorphism, Computing Surveys, Vol. 17 n 4, pp. 471-522, 1994

Automated Procedure Behavior ...

180

7. 2008, SPARK 95 - The SPADE Ada 95 Kernel, Praxis High Integrity Systems
Ltd

8. Hevery M., 2008, Guide: Writing Testable Code, http://misko.hevery.com/code-
reviewers-guide/

9. Miller A., 2008, Clojure and testing,
http://tech.puredanger.com/2013/08/31/clojure-and-testing/

10. Sierra S., 2014, API for clojure.test,
http://richhickey.github.io/clojure/clojure.test-api.html

11. Martin M., 2014, Speclj - A TDD/BDD framework for Clojure, http://speclj.com/
12. 2014, Midje Github Repository, https://github.com/marick/Midje
13. 2014, HUnit -- Haskell Unit Testing, http://hunit.sourceforge.net/
14. Halloway S., 2009: Programming Clojure, ISBN: 978-1-93435-633-3, The

Pragmatic Bookshelf
15. Emerick Ch., Carper B., Grand Ch., 2012, Clojure Programming, O'Reilly Me-

dia Inc., ISBN: 978-1-449-39470-7
16. Cardelli L., Wegner P., 1985, On Understanding Types, Data Abstraction and

Polymorphism, Computing Surveys, Vol. 17 n 4, pp. 471-522, 1994

