

INTERNATIONAL JOURNAL OF APPLIED COMPUTER SCIENCE METHODS (JACSM)
is a semi-annual periodical published by the University of Social Sciences
in Lodz, Poland.

PUBLISHING AND EDITORIAL OFFICE:
University of Social Sciences (SAN)
Information Technology Institute (ITI)
Sienkiewicza 9
90-113 Lodz
Tel.: +48 42 6646654
Fax.: +48 42 6366251
E-mail: acsm@swspiz.pl
URL: http://acsm.swspiz.pl

Print: Drukarnia Wojskowa w Łodzi Sp. z o.o., ul. Gdańska 130, tel.: +48 42 637 76 77

Copyright © 2012 University of Social Sciences, Lodz, Poland. All rights reserved.

AIMS AND SCOPE:
The International Journal of Applied Computer Science Methods is a semi-annual, refereed
periodical, publishes articles describing recent contributions in theory, practice and applications
of computer science. The broad scope of the journal includes, but is not limited to, the follow-
ing subject areas:
Knowledge Engineering and Information Management: Knowledge Processing, Knowledge
Representation, Data Mining, Machine Learning, Knowledge-based Systems, Knowledge Elici-
tation, Knowledge Acquisition, E-learning, Web-intelligence, Collective Intelligence, Language
Processing, Approximate Reasoning, Information Archive and Processing, Distributed Infor-
mation Systems.
Intelligent Systems: Intelligent Database Systems, Expert Systems, Decision Support Systems,
Intelligent Agent Systems, Artificial Neural Networks, Fuzzy Sets and Systems, Evolutionary
Methods and Systems, Hybrid Intelligent Systems, Cognitive Systems, Intelligent Systems and
Internet, Complex Adaptive Systems.
Image Understanding and Processing: Computer Vision, Image Processing, Computer
Graphics, Pattern Recognition, Virtual Reality, Multimedia Systems.
Computer Modeling, Simulation and Soft Computing: Applied Computer Modeling and
Simulation, Intelligent Computing and Applications, Soft Computing Methods, Intelligent Data
Analysis, Parallel Computing, Engineering Algorithms.
Applied Computer Methods and Computer Technology: Programming Technology, Data-
base Systems, Computer Networks Technology, Human-computer Interface, Computer Hard-
ware Engineering, Internet Technology, Biocybernetics.

DISTRIBUTION:
Apart from the standard way of distribution (in the conventional paper format), on-line disse-
mination of the JACSM is possible for interested readers.

CONTENTS

Andrzej Bartoszewicz, Piotr Leśniewski
Robust Flow Controllers
for a Single Virtual Circuit in Data Transmission
Networks With Lossy Links 5

Konrad Grzanek
Prerequisites for Effective
Requirements Management 21

Bartłomiej Kacprzak, Piotr Goetzen,
Alina Marchlewska
Creating Virtual Environment
for Educational Purposes of Schools
and Universities 29

Marcin Sztandarski, Grzegorz Sowa,
Piotr Goetzen, Alina Marchlewska
A Testing Environment
for Distributed Systems 45

Marcin Kolibabka, Andrzej Cader,
Agnieszka Siwocha, Marcin Krupski
Ways of Selecting Internal Patterns
 in Multilayer Perceptron Network 63

Arturo Pérez
Spanish Sign Language Interpreter
for Mexican Linguistics 75

5

ROBUST FLOW CONTROLLERS FOR
A SINGLE VIRTUAL CIRCUIT IN DATA TRANSMISSION

NETWORKS WITH LOSSY LINKS

Andrzej Bartoszewicz, Piotr Leśniewski

Department of Computer Science, University of Social Sciences,
9 Sienkiewicza St., 90-113 Łódź, Poland

(andrzej.bartoszewicz, piotr.lesniewski2)@gmail.com

Abstract
The paper concerns an application of regulation theory methods to modeling
and effective control of connection-oriented data transmission networks. In
particular the problem of congestion control in a single virtual circuit of such a
network is considered and new discrete-time sliding mode data flow rate
controllers are proposed. The controllers are designed in such a way that packet
losses are explicitly accounted for. The closed-loop system stability and finite-
time error convergence are proved. Moreover, a number of favorable properties
of the proposed controllers are stated as theorems, formally proved and verified
in a simulation example. It is demonstrated that the proposed controllers
guarantee full utilization of the available bandwidth and eliminates the risk of
bottleneck node buffer overflow. Application of time-varying sliding
hyperplanes helps avoid excessive transmission rates at the beginning of the
control process.

Key words: data transmission networks, congestion control, sliding-mode
control, discrete-time systems

1 Introduction

The problem of congestion control in data transmission networks has re-
cently become one of the most extensively studied research issues. Due to
bandwidth variations, packet losses, round trip time uncertainty and users’
constraints, the solution of the problem is not an easy task. On the other hand,
the control theoretic approach [14, 19] to the congestion elimination offers
many well developed tools and methods which can turn out to be very useful
in the design of flow management strategies. Therefore, in this paper we in-
troduce a discrete time model of a single virtual circuit in connection-oriented
network and we apply sliding mode methodology [13–18, 20] to solve the
congestion problem in the circuit.

Robust Flow Controllers for ...

6

The difficulty of the congestion control in modern data transmission net-
works is mainly caused by long propagation delays in the system. If conges-
tion occurs at a specific node, information about this condition must be con-
veyed to all the sources transmitting data through that node, which involves
feedback propagation delays. The congestion control in connection-oriented
networks has recently been studied in several papers [1–12]. The control algo-
rithms proposed in those papers employ a proportional plus derivative [10],
stochastic [7], adaptive [9] and Smith predictor based control strategies [1],
[2], [11], [12]. Recently a number of sliding mode congestion control algo-
rithms have also been proposed [3–6]. However, not many results on conges-
tion control in networks with lossy links are available. Therefore, this paper
presents a sliding mode flow controller for a single connection which looses
some packets during the transmission process. In other words, in this paper –
on the contrary to the previously published results – we consider not only data
losses caused by the bottleneck buffer link overflow, but also those which for
other reasons happen on the transmission way from the source to the bottle-
neck link.

In the next section we introduce the state space model of the network, and
then in section 3 we use this model to design a feasible sliding mode conges-
tion control strategies.

2 Network Model

In this paper we consider a virtual circuit in a connection-oriented network
which consists of a single data source, intermediate nodes and a destination.
The block diagram of the circuit is shown in Figure 1. It is assumed that there
is only one bottleneck node in the network. A controller which determines
data transmission rate of the source is placed at the bottleneck node. The out-
put signal of the controller (denoted by u) is sent back to the source, and
reaches it after backward delay TB. The source then sends the specified
amount of data, which is passed from node to node until it reaches the bottle-
neck queue after forward delay TF. We assume that somewhere along that line
a known, fixed percentage of data packets are lost so that only αu (where
α ∈ (0,1)) data packets arrive at the bottleneck node. The round trip time RTT,
i.e. the delay between generating a signal by the controller and the requested
data arriving at the bottleneck queue, is a sum of the forward and backward
propagation delays

RTT = TB + TF (1)

Further in the paper, T represents the discretisation period, x(kT) is the bottle-
neck queue length at time instant kT, and xd > 0 is the demand value of x(kT).
It is assumed that before the start of data transmission, the buffer is empty, i.e.

Bartoszewicz A., Leśniewski P.

7

x(kT < 0) = 0. We also assume that the round trip time is a multiple of the
discretisation period, i.e. RTT = mRTTT, where mRTT is a positive integer.

Figure 1. The network model

The controller output at time kT is denoted as u(kT).The first data will
reach the queue after RTT so for any time kT ≤ RTT the queue length

x(kT) = 0 (2)

The amount of data which may leave the bottleneck buffer is modeled as
an a priori unknown bounded function of time d(kT). The maximum value of
d(kT) is represented by dmax. The amount of data actually leaving the bottle-
neck node at time kT is denoted by h(kT). For any k ≥ 0

() ()0 maxh kT d kT d≤ ≤ ≤ (3)

The queue length for kT > RTT may be expressed as

() () () () ()
11 1 1

0 0 0 0

RTTk mk k k

j j j j

x kT u jT RTT h jT u jT h jTα α
− −− − −

= = = =

= − − = −∑ ∑ ∑ ∑ (4)

and the network can be formulated in the state space in the following form

() () () ()
() ()

1
T

k T kT u kT h kT

y kT kT

+ = + +  
=

x Ax b o

q x
 (5)

where x(kT) = [x1(kT) x2(kT) ... xn(kT)]T is the state vector, y(kT) = x1(kT) is the
queue length, and xi(kT) = u[(k – n + i – 1)T] for any i = 2, ..., n. Furthermore,
A is an n x n state matrix

Robust Flow Controllers for ...

8

1 0 0
0 0 1 0

0 0 0 1
0 0 0 0

α 
 
 

=  
 
 
  

Α


  



 (6)

b, o and q denote n × 1 vectors

0 1 1
0 0 0

0 0 0
1 0 0

−     
     
     

= = =     
     
     
          

b o q  
 (7)

and n = mRTT + 1. The state space equation can also be rewritten as follows

() () () ()
() ()

() ()
() ()

1 1 2

2 3

1

1

1

1

1
n n

n

x k T x kT x kT h kT

x k T x kT

x k T x kT

x k T u kT

α

−

 + = 
  

  


+ −


+ =


 + =
  = +

 (8)

with the output signal y(kT) = x1(kT). The desired state of the system is de-
noted by xd = [xd1 xd2 ... xdn]T. The first state variable xd1 is the demand queue
length, and further in the paper it is represented by xd. It can be noticed from
equations (8) that for h(kT) = 0 all other components of the demand state vec-
tor are equal to zero.

3 Congestion Control Strategies

In this section the flow control problem for the described network is consi-
dered. In chapter 3.1 a chattering-free discrete-time sliding mode controller is
designed that guarantees finite-time error convergence to zero. Important
properties of the proposed control strategy are then formulated and proved.
Since the strategy proposed in chapter 3.1 may lead to large values of control
signal in the starting phase of the control process, in chapter 3.2 a time-
varying sliding hyperplane is introduced that minimizes this effect. Then im-
portant properties of the modified control strategy are also formulated and
proved.

Bartoszewicz A., Leśniewski P.

9

3.1 Time-Invariant Sliding Hyperplane

For the sliding mode controller design purpose we neglect the disturbance
h(kT) and introduce a sliding hyperplane described by the following equation

() () 0Ts kT kT= =c e (9)

where vector cT = [c1 c2 ... cn] satisfies cTb ≠ 0. Error of the closed loop sys-
tem is denoted by e(kT) = xd – x(kT). Substituting (5) into cTe[(k + 1)T] = 0 we
obtain the following control law

() () ()1T Tu kT kT
−

= −  dc b c x Ax (10)

When this control signal is used, the closed-loop system state matrix has the
form Ac = [1 – b(cTb)–1cT]A. The characteristic polynomial of this matrix

() 11 1 2

n nn n

n n

c c c cdet z z z z
c c

α−− − −
− = + +…+n cI A (11)

which gives the condition cn ≠ 0. A discrete-time system is asymptotically
stable if and only if all of its eigenvalues are located inside the unit circle.
Furthermore, to ensure finite-time error convergence to zero the characteristic
polynomial (11) has to satisfy

() ndet z z− =n cI A (12)

Comparing the coefficients of (11) and (12) we find the following form of
vector c

1 1 1 T
ncα

 =  c  (13)

Using (6), (7) and (13) we can rewrite (10) as follows

() () ()
2

1 n

d i
i

u kT x x kT x kT
α =

= − −   ∑ (14)

From (8) we notice that all the state variables except x1 are the delayed values
of the control signal, i.e. for i = 2, ..., n

() ()1ix kT u k n i T= − + −   (15)

Substituting (15) into (14) we get

Robust Flow Controllers for ...

10

() () ()
11

RTT

k

d
i k m

u kT x x kT u iT
α

−

= −

= − −   ∑ (16)

This completes the design of a flow control algorithm with a time-invariant
sliding hyperplane.

Properties of the Proposed Strategy

In the previous section a time-invariant sliding hyperplane has been de-
signed to guarantee stability and finite-time error convergence of the closed-
loop system. The amount of data to be sent is given by (16). Consequently

()0 dxu
α

= (17)

Lemma 1: If the designed sliding mode controller is applied, then its output
for any k ≥ 0 satisfies

() ()1 1u kT h k T
α

= −   (18)

Proof: Substituting (4) into (16) we obtain

() () () ()

() ()

1 1 1

0 0

1 1

0 0

1

1

RTT

RTT

k m k k

d
j j j k m

k k

d
j j

u kT x u jT h jT u jT

x h jT u jT

α
α

α

− − − −

= = = −

− −

= =

 
= − + − 

 
 

= + − 
 

∑ ∑ ∑

∑ ∑
 (19)

By mathematical induction: first we check if (18) holds for k = 1

() () () () ()
0 0

0 0

1 1 10 0d
d d

j j

xu T x h jT u jT x h h
α α α α= =

 
= + − = + − =    

 
∑ ∑ (20)

Now we assume that (18) holds for some k = m, where m is a positive integer,
i.e.

() ()1 1u mT h m T
α

= −   (21)

Then using this assumption we can find from (19) that for k = m + 1

Bartoszewicz A., Leśniewski P.

11

() () ()

() ()

() () ()

0 0

0 1

1

0 0

11

1

1 1 1

m m

d
j j

m m
d

d
j j

m m

j j

u m T x h jT u jT

xx h jT u jT

h jT h jT h mT

α

α α

α α α

= =

= =

−

= =

 
+ = + −    

 
 

= + − − 
 

= − =

∑ ∑

∑ ∑

∑ ∑

 (22)

which means that if (18) holds for k = m, then it also holds for k = m + 1.
Finally, taking into account (21) and (22) we can conclude that (18) indeed

holds for any integer k ≥ 0. This ends the proof.
Lemma 1 clearly shows that the output of the proposed controller is always

nonnegative and bounded, i.e. for any k ≥ 1

() 10 maxu kT d
α

≤ ≤ (23)

Theorem 1: If the proposed strategy is used, then the queue length will never
exceed its demand value, i.e. for any k ≥ 0

() dx kT x≤ (24)

Proof: From (2) for any k < (mRTT + 1) the queue length x(kT) = 0. Hence to
prove the theorem we only need to check if (24) holds for k ≥ mRTT + 1. Using
(18) we can rewrite (4) as

() ()
1

1RTT

k

d d
j k m

x kT x h jT x
−

= − −

= − ≤∑ (25)

This ends the proof.
From the first equation in set (8) we notice that if x[(k +1)T] is greater than

zero, then the available bandwidth d(kT) is fully used. Theorem 2 gives the
necessary condition to guarantee that the queue length is strictly positive.

Theorem 2: If the proposed strategy is used, and the demand queue length
satisfies

()1d RTT maxx m d> + (26)

then for any k > mRTT the queue length is always strictly positive.

Robust Flow Controllers for ...

12

Proof: From (3) we see that for any k ≥ 0 the consumed bandwidth is always
upper bounded h(kT) ≤ dmax. Using (25) for k > mRTT, we obtain

() () ()
1

1

1 0
RTT

k

d d RTT max
j k m

x kT x h jT x m d
−

= − −

= − ≥ − + >∑ (27)

This ends the proof.
Theorem 2 shows that for any k > mRTT the queue length is strictly greater

than zero, which implies that the available bandwidth is fully used for any
k ≥ mRTT.

3.2 Time-Varying Sliding Hyperplane

A disadvantage of the control strategy proposed in chapter 3.1 is a large
value of the control signal at the first time instant. Therefore, in this subsec-
tion we introduce a time-varying hyperplane that reduces this effect. The
properties of this modified strategy are then formulated and proved.

We replace equation (9) describing the sliding hyperplane with the follow-
ing one

() () () 0Ts kT c e kT f kT= + = (28)

where f(kT) is an a priori known function of time chosen to satisfy s(0) = 0
(the representative point at time instant k = 0 is positioned on the sliding
hyperplane). This gives the following condition

() ()0 0Tf c e= − (29)

Because the previously proposed controller exhibits very good dynamic per-
formance after the starting phase of the regulation process, there should exist
such a k0 that f(kT) = 0 for any k > k0. Furthermore function f(kT) should be
strictly monotonic in the time interval [0, k0] .With the use of such a function
the sliding hyperplane moves monotonically towards the origin of the coordi-
nate frame, intersects it after k0, and remains fixed for any k > k0.

We chose f(kT) to be linear in the interval [0, k0]. Thus it can be written as
follows

()
()0

0
0

0

0 for

0 for

Tk k k k
kf kT

k k

− ≤= 
 >

c e
 (30)

Now substituting e (kT) = xd – x(kT) into s[(k + 1)T] = 0 we obtain

Bartoszewicz A., Leśniewski P.

13

() () () (){ }1
 1T Tu kT kT f k T

−
= − + +    dc b c x Ax (31)

where vector c is given by (13) in order to maintain the desirable properties of
the previous control strategy for k > k0.

Using (6), (7), (13) and (15) we rewrite (31) as follows

() () () ()

() () ()

1
2

1

1

1 1 1

1 1 1
RTT

n

d i
i n

k

d
j k m n

u kT x x kT x kT f k T
c

x x kT u jT f k T
c

α

α

=

−

= −

= − − + +      

= − − + +      

∑

∑
 (32)

This completes the design of a flow control algorithm with the proposed time-
varying sliding hyperplane.

Properties of the Proposed Strategy

In the previous subsection we modified the strategy proposed in chapter
3.1, introducing a time-varying hyperplane. The goal of this modification is to
reduce the control signal in the starting phase of the data transmission process.
In this section, we formulate and prove the properties of this altered algo-
rithm. Lemma 2 shows that the control signal is nonnegative and upper
bounded. Theorems 3 and 4 (analogous to Theorems 1 and 2) show that the
queue length will not exceed its demand value and that after some initial time
the queue length will always be strictly positive, which implies that the avail-
able bandwidth will be fully used.

Lemma 2: If the designed sliding mode controller is applied, then its output
for any k ≥ 0 satisfies

() () () (){ }1 11 1
n

u kT h k T f k T f kT
cα

= − + + −       (33)

Proof: Substituting (4) into (32)

() () () ()
1 1

0 0

1 1 1
k k

d
j j n

u kT x h jT u jT f k T
cα

− −

= =

 
= + − + +    

 
∑ ∑ (34)

By mathematical induction, first we check if (33) holds for k = 0

Robust Flow Controllers for ...

14

() () () ()

() () () () () ()

1 1

0 0

1 10

1 1 1 1 10 0

d
j j n

d
n n n

u x h jT u jT f T
c

x f T f T f h T f T f
c c c

α

α α

− −

= =

 
= + − + 

 

= + = − = − + −      

∑ ∑
 (35)

Then we assume that (33) holds for k = m

() () () (){ }1 11 1
n

u mT h m T f m T f mT
cα

= − + + −       (36)

Using this assumption from (32) we can find, that for k = m + 1

() () () ()

() () ()

() ()() ()

() ()

() () ()

()

0 0

0

1

0 0

1

0

211

1 1 2 0

1 11 1

1 1 12

1 1 11

1

m m

d
j jn

m
d

j n

m

j n

m
d d

j n

m

j n n

f m T
u m T x h jT u jT

c

x h jT f m T u
c

h j T f j T f jT
c

x xh jT f m T
c k

h jT f m T f T
c c

h mT

α

α α

α

α α α

α

α

= =

=

=

=

−

=

+    + = + + −    
 

= + + + −  

 
 − − + + −      

= + + + −  

 
− − + −   

 

=

∑ ∑

∑

∑

∑

∑

() (){ }1 2 1
n

f m T f m T
c

+ + − +      

 (37)

which means that if (32) holds for k = m, then it also holds for k = m + 1.
Taking into account (35) and (37), we conclude that equation (33) actually
holds for any k ≥ 0. This ends the proof.

It is easy to notice, that because max{[f((k + 1)T) – f(kT)]/cn} = xd/αk0 and
h(kT) ≤ dmax for any k ≥ 0, then u(kT) ≤ (xd/αk0) + dmax for any k ≥ 0. Moreo-
ver, as min{[f((k + 1)T) – f(kT)]/cn} = 0 and h(kT) ≥ 0 for any k ≥ 0 then
u(kT) ≥ 0 for any k ≥ 0. This shows that the designed controller determines
data transmission rate which is always nonnegative and upper-bounded. Fur-
thermore, choosing f(kT) to be linear in the interval [0, k0] we obtained a con-
stant upper bound of the control signal, which is quite practical from applica-
tion point of view.

Bartoszewicz A., Leśniewski P.

15

Theorem 3: If the proposed controller is applied, then the queue length will
never exceed its demand value, i.e. for any k ≥ 0

() dx kT x≤ (38)

Proof: Transforming (32) we obtain

() () () ()
11 1 1

RTT

k

d
j k m n

x x kT u kT u jT f k T
cα

−

= −

− = + − +      ∑ (39)

From the second Lemma u(kT) ≥ 0 for any k ≥ 0, and from (30)
f[(k + 1)T]/cn ≤ 0 also for any k ≥ 0. From this follows that the right hand side
of (39) is nonnegative, which gives xd – x(kT) ≥ 0. This ends the proof.

Theorem 4: If the proposed control strategy is applied and the demand queue
length satisfies inequality

()1d RTT maxx m d> + (40)

then the queue length is strictly greater than zero for any k > k0 + mRTT.
Proof: Using Lemma 2 we can rewrite (4) as follows

() () ()

() ()() ()

() (){ } () ()

() (){ } ()

1

0

1

1

2 1

0 0 0

1

10

0

1 11 1

1

1

RTT

RTT

RTT

k

j

k m

j n

k m k

RTT d
j jn

k

d RTT
j k mn

x kT h jT u

h j T f j T f jT
c

f k m T f T h jT h jT x
c k

x f k m T f T h jT
k c

α

α
α

α

α

−

=

− −

=

− − −

= =

−

= − −

= − +

 
 + − + + −      

= − − + − +  

= + − − −  

∑

∑

∑ ∑

∑

 (41)

Then using (30), for any k > k0 + mRTT from (41) we obtain

() () (){ } ()

() ()

1

10

1
0

10 0

1

1 1 1 0

RTT

RTT

k

d RTT
j k mn

k

d d d RTT max
j k m

x kT x f k m T f T h jT
k c

kx x h jT x m d
k k

α −

= − −

−

= − −

= + − − −  

−
= − − ≥ − + >

∑

∑
 (42)

This shows that the queue length is indeed strictly greater than zero for any
k > k0 + mRTT.

Robust Flow Controllers for ...

16

4 Simulation Example

In order to verify the properties of both proposed strategies computer si-
mulations of the network are performed. The discretisation period T is se-
lected as 1 ms. The round trip time RTT is assumed to be 9 ms. Therefore
mRTT = 9 , and n = 10. The maximum available bandwidth of the bottleneck
node is dmax = 80 kb. According to Theorems 2 and 4, the demand queue
length xd in both control algorithms should be greater than 800 kb. Therefore
xd has been chosen as 810 kb. In the presented simulation example, coefficient
α = 0.97, which means that 97% of the data sent by the source arrive at the
bottleneck node. For the time-varying hyperplane, parameter k0 was chosen
equal to 7.

Figure 2. Available bandwidth

The available bandwidth is shown in Figure 2. It changes rapidly between
small and large values, which reflects the most adverse possible conditions,
that could exist in the network. Figure 3 shows the output signal of controller
(16). It can be seen from this figure that the control signal is always strictly
positive and upper bounded. Then, Figure 4 shows the bottleneck link queue
length for the same control strategy. We can observe, that the queue length
never exceeds its demand value, and is strictly positive for any k > mRTT. This
implies that the proposed strategy eliminates the risk of buffer overflow and
ensures full bandwidth utilization.

Bartoszewicz A., Leśniewski P.

17

Figure 3. Output signal of the controller with the time-invariant sliding hyperplane

Figure 4. Queue length with the application of the controller with the time-invariant
sliding hyperplane

Figures 5 and 6 show the respective simulation results for the network con-
trolled according to strategy (32). Comparing figures 3 and 5 we notice that
the introduction of a time-varying sliding hyperplane significantly reduces the
maximum value of the control signal in the starting phase of the control
process. Furthermore, as can be seen from figure 6, all the advantages of the
previous controller with the time-invariant sliding hyperplane are maintained.

Robust Flow Controllers for ...

18

Figure 5. Output signal of the controller with the time-varying sliding hyperplane

Figure 6. Queue length with the application of the controller with the time-varying
sliding hyperplane

5 Conclusions

In this paper two sliding mode control strategies for a single virtual con-
nection in a network with lossy links have been presented. The first strategy,
which uses a time-invariant sliding hyperplane, has been designed to ensure
closed-loop system stability and finite time error convergence. Then it has
been modified by introducing a time-varying sliding hyperplane in order to
reduce the maximum value of the control signal in the starting phase of data
transmission. Flow rates generated by both strategies are proved to be always
non-negative and upper bounded. Moreover, both control algorithms eliminate
the risk of buffer overflow and for each of the algorithms conditions that
guarantee full bottleneck link bandwidth consumption have been derived.

Bartoszewicz A., Leśniewski P.

19

Acknowledgments

This work has been performed in the framework of a project "Optimal slid-
ing mode control of time delay systems" financed by the National Science
Centre of Poland – decision number DEC 2011/01/B/ST7/02582.

References

1. A. Bartoszewicz and T. Molik, 2004, “ABR traffic control over multi-source
single-bottleneck ATM networks,” Journal of Applied Mathematics and
Computer Science., vol. 14, no. 1, pp. 43-51.

2. A. Bartoszewicz, 2006, “Nonlinear flow control strategies for connection-
oriented communication networks,” IEE Proceedings – Control Theory and
Applications, vol. 153, no. 1, pp. 21-28.

3. A. Bartoszewicz, J. Żuk, 2009, “Discrete-time sliding mode flow controller
for multi-source connection-oriented communication networks,” Journal of
Vibration and Control, vol. 15, no. 11, pp. 1745-1760.

4. P. Ignaciuk, A. Bartoszewicz, 2008, “Linear quadratic optimal discrete time
sliding mode controller for connection oriented communication networks,”
IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 4013–4021.

5. P. Ignaciuk, A. Bartoszewicz, 2009, “Linear quadratic optimal sliding mode
flow control for connection-oriented communication networks,” Internation-
al Journal of Robust and Nonlinear Control, vol. 19, no. 4, pp. 442–461.

6. P. Ignaciuk, A. Bartoszewicz, 2011, “Discrete-time sliding-mode congestion
control in multi-source communication networks with time-varying delay,”
IEEE Transactions on Control Systems Technology, vol. 19, no. 4, pp. 852–
867.

7. O. C. Imer, S. Compans, T. Basar, R. Srikant, 2001, “Available bit rate con-
gestion control in ATM networks,” IEEE Control Systems Magazine, vol.
21, no. 1, pp. 38-56,.

8. R. Jain, 1996, “Congestion control and traffic management in ATM net-
works: recent advances and a survey,” Computer Networks ISDN Syst., vol.
28, no. 13, pp. 1723-1738.

9. K. P. Laberteaux, Ch. E. Rohrs, P. J. Antsaklis, 2002, “A practical control-
ler for explicit rate congestion control,” IEEE Transactions on Automatic
Control, vol. 47, no. 6, pp. 960-978.

10. I. Lengliz, F. Kamoun, 2000, “A rate-based flow control method for ABR
service in ATM networks,” Computer Networks, vol. 34, no. 1, pp. 129-138.

11. S. Mascolo, 1999, “Congestion control in high-speed communication net-
works using the Smith principle,” Automatica, vol. 35, no. 12, pp. 1921-
1935.

Robust Flow Controllers for ...

20

12. S. Mascolo, 2000, “Smith’s principle for congestion control in high-speed
data networks,” IEEE Transactions on Automatic Control, vol.45, no. 2, pp.
358-364.

13. C. Milosavljević, B. Peruničić-Draženović, B. Veselić, D. Mitić, 2006,
“Sampled data quasi-sliding mode control strategies,” IEEE International
Conference on Industrial Technology”, pp. 2640-2645.

14. J. Slotine, W. Li, 1991, Applied Nonlinear Control. Prentice–Hall, Engle-
wood Cliffs, NJ.

15. S. Tokat, I. Eksin, M. Guzelkaya, M. Soylemez, 2003, “Design of a sliding
mode controller with a nonlinear time-varying sliding surface”. Transac-
tions of the Institute of Measurement and Control vol. 25, pp. 145-162.

16. V. Utkin, 1977, “Variable structure systems with sliding modes,” IEEE
Transactions on Automatic Control, vol. 22, pp. 212-222.

17. V. Utkin, S. Drakunow, 1989, “On discrete-time sliding mode control,”
IFAC Conference on Nonlinear Control, pp. 484-489.

18. V. Utkin, 1992, Sliding Modes in Control and Optimization, Springer-
Verlag, Berlin.

19. M. Vidyasagar, 1993, Nonlinear Systems Analysis, Prentice-Hall Interna-
tional, Englewood Cliffs.

20. K. Young, V. Utkin, Ü. Özgüner, 1999, “A control engineer’s guide to slid-
ing-mode control,” IEEE Transactions on Control Systems Technology, vol.
7, pp. 328-342.

21

PREREQUISITES FOR EFFECTIVE
REQUIREMENTS MANAGEMENT

Konrad Grzanek

IT Institute, Academy of Management, Łódź, Poland
kgrzanek@swspiz.pl, kongra@gmail.com

Abstract
Despite an undeniable progress in the whole software creation process, software
development is still more art than science. The requirements analysis is a highly
critical step in the software life-cycle. Requirement managements errors are the
most common errors in the software projects. The proper and effective
requirements management saves the overall project costs. The key motivation
behind this work was opening a way of finding approaches to managing the
requirements appearing in such large software projects as compilers for various
programming languages. This paper is an introduction to a full presentation of
requirements management solution in which the requirements and
implementation information is placed directly in the source code. We
concentrate on describing a context in which the requirements management
process takes place, trying to present the most interesting existing solutions,
indicating the problems and opening a discussion on what ways to follow in the
future scientific research.

Key words: requirements engineering, requirements abstraction, functional

programming

1 The State of the Art in Requirements Management

According to the commercial surveys conduced back in the ’90s an aver-
age US software project overran its budgeted time by 190%, it’s budgeted
costs by 222%, and delivered only 60% of the planned functionality. Only
16% of projects were delivered at the estimated time and cost, and 31% of
projects were canceled before delivery, with larger companies performing
much worse than smaller ones (source: [1]). Martyn Thomas also mentions:

Grzanek K.

22

„A UK survey, published in the 2001 Annual Review of the British
Computer Society showed a similar picture. Of more than 500 develop-
ment projects, only three met the survey’s criteria for success. In 2002,
the annual cost of poor quality software to the US economy was esti-
mated at $60B.”

Despite an undeniable progress in the whole software creation process,
software development is still more art than science (after [3]). Most research-
ers point out the following causes of software process failures [3]:
- Poor requirements management. We forge ahead with development lack-

ing user input and without a clear understanding of the problem we are at-
tempting to solve.

- Poor change management. Changes to requirements and other develop-
ment products are inevitable; yet we rarely track them or understand their
impact.

- Poor quality control. We have poor measures for system quality, little
knowledge of processes that affect quality, and no feedback to modify the
process after witnessing the effects of a particular development strategy.

- Little control of schedules and costs. Accurate planning is the exception
while unrealistic expectations are the norm.

It is a fact universally acknowledged in the software engineering world

that requirements analysis is a highly critical step in the software life-cycle
[2]. The lack of the ability to specify, control and manage the software project
requirements causes the loss of control over the overall system behavior, it’s
design and quality [3]. The proper and effective requirements management
saves the overall project costs due to the following reasons (as stated in [3]):
- Requirement errors typically cost well over 10 times more to repair than

other errors.
- Requirement errors typically comprise over 40% of all errors in a software

project.
- Small reductions in the number of requirement errors pay big dividends in

avoided rework costs and schedule delays.

Moreover, the requirement managements errors are the most common er-

rors in the software projects. No wonder the issue is seen as one of the funda-
mental issues in the field both by scientific researches as well as organizations
like Software Engineering Institute (SEI) with their Capability Maturity Mod-
el. In CMM the requirements management is one of the first steps to achiev-
ing process maturity and the key area that must be addressed to move from
Level 1 to Level 2 [3].

We define a requirement as a capability or feature needed by a user to
solve a problem or achieve an objective. There are two major kinds of re-

Prerequisites for Effective ...

23

quirements, the functional and the non-functional ones (abbreviated NFR).
Some management approaches try to treat these two categories uniformly, but
often they are treated separately due to their apparent differences in nature (e.
g. [4]) - the functional requirements specify each function that a system must
be capable of performing, whereas the NFRs specify how the system is going
to be implemented to achieve it’s goals and what it’s quality attributes will be.

The requirements engineering as defined in [5] and [6] is:

„the branch of software engineering concerned with the real-world goals
for, functions of, and constraints on software systems. It is also con-
cerned with the relationship of these factors to precise specifications of
software behavior, and to their evolution over time and across software
families.”

This discipline inevitably breaks the borders of multiple system views, be-
cause – as stated in [6] - software cannot function in isolation from the envi-
ronment in which it operates and in which it is embedded. So in fact the re-
quirements engineering may be treated as a branch of systems engineering.
The paper [6] also states that requirements may and should undergo formal
treatment, i. e. the formal description and reasoning. Present article addresses
the problem of the formal describing and managing the requirements in a per-
sistent way.

Works by Zave and Jackson expose similar conclusions related to the mul-
tidisciplinary character of requirements engineering. In [7] the authors put
a particular emphasis on the impact of the environment onto the requirements
engineering process. They state that the descriptions of the requirements
should be in fact the environment’s descriptions. Another problem they try to
address are the implementation bias while defining the requirements (espe-
cially in the early stages/high abstraction layers) and the role of knowledge
management in the whole process. Some design and implementation
achievements presented in the present paper loosely refer to the knowledge
management area.

Hofmann and Lehner [8] underline the unquestionable importance of pos-
sessing a deep domain knowledge on increasing the probability of software
project success. Consequently the requirements engineering is the key factor
here, together with the experts’ knowledge as well as the stakeholders’ com-
petence. According to this the requirements engineering is a multidisciplinary
and highly competence-demanding field.

This multidisciplinary character refers also to the possible applications for
the requirements management. The discipline is by no means limited to the
software domain. The paper [9] describes a requirements management frame-
work that enables health information custodians (HIC) to document and track
compliance with privacy legislation as the legislation and hospital business

Grzanek K.

24

processes evolve. An interesting graphical notation called the User Require-
ments Notation (URN) is given there together with it’s major complementary
notations, namely the Goal-oriented Requirements Language and Use Case
Maps.

Requirements representation is very important with respect to the potential
algorithmic processing. For example [11] gives a broad and systematic review
of existing literature works that transform textually represented requirements
into analysis model. The major reason is rooted in model transformation being
one of the basic principles of Model Driven Architecture. According to the
paper building a software system consists of a sequence of transformations,
starting from requirements and ending with implementation. The problem of
textual representations and processing of requirements will also be addressed
further in our works.

In [10] there are mentioned the relations between requirements and high-
level testing methodology called Abstract Testing. The article states that „[...]
often a one-to-one correspondence between abstract test cases (resp. verifica-
tion scenarios) and requirements can be achieved, which links abstract testing
much more closely to the requirements and facilitates construction and main-
tenance of abstract test cases”. The interesting feature of this methodology as
a whole is an existence of a close relationship of the verification scenarios
(and so – indirectly – the requirements) to the source code by the fact of an
automatic checking the scenarios against the sources performed by a source
model checker.

The requirements modeling with a combination of SysML and UML are
described in [12]. The work is of a special significance because it presents the
problem in the context of real-time systems specification. A classification of
user requirements is also proposed there.

2 The Idea of Source Code as the Requirements Database

Now we should take a look at the existing approaches and tools automat-
ing the requirements management. According to [16] most requirements man-
agement tools perform the same core functions:
- They allow the system developer to import large documents from a variety

of standard word processing formats.
- These documents can be split up into separately managed document ele-

ments.
- The document elements are subject to a rigorous change and version con-

trol regime.
- Relations can be established between document elements and attributes

can be associated with the document elements and often the relations.

Prerequisites for Effective ...

25

- A variety of document views can be generated using both attributes and
relations, generally specific traceability views such as traceability matric-
es.

- Document templates can be set up and used to create new composite doc-
uments.

- Scripting or query languages provide support for the retrieval of informa-
tion and the development of project specific views.

- Simple checks to ensure structural integrity of documents may be per-
formed.

An apparent importance of attribution and labeling shows up. In fact, the

labels are the core of our planned approach. The tool we start working on will
also possess an effective querying mechanisms.

When referring to the architecture of requirements management tools [16]
states that these tools have much in common: „They are generally based on
a document repository, which may either be hosted on top of an industry stan-
dard database (relational or object-oriented) or a specifically crafted file store
[...]. Most tools provide some simple control for multi-party editing of docu-
ments, the granularity of this control is dependent upon the underlying reposi-
tory. At the front end, the tools generally appear similar to standard document
processors. From a user interface standpoint, they provide a number of tools
to support work with large hierarchical documents including the ability to
work seamlessly in different document views.”

[16] notices a very important weakness of these tools; they are in general
process-free. The obvious yet not fully realized yet solution is „to integrate
requirements management tools with a work-flow or process engine. Despite
this being an obvious answer it is not very straightforward to achieve.” One
possible solution would make a step towards integrating programmers’ per-
sonal information management with requirements management and their basic
professional activity: working on the source code of implemented systems.

More features of an ideal requirements management system are presented
in [17]. They extend the list of previously mentioned desired features with
such elements as:
- Using effective information models
- Supporting various views of the same data
- Handling formal change requests for the requirements
- Keeping the history of requirements change
- Allowing base-lining
- Effective tool integration

and many more.
The key motivation behind this work was finding a way to manage the re-

quirements appearing in such large software projects as compilers for various

Grzanek K.

26

programming languages. The Java 6 Language Specification is over 600-
pages document containing lots of facts about the Java language run-time and
compiler. Our goal is to deal with all those facts in an organized way. There
are the following conclusions related to our situation:
1. There are huge amounts of facts in such a system, expected number reach-

es thousands of facts.
2. The facts are distributed, spread around many chapters of the source doc-

ument. It closely resembles real-life situations that may appear in software
projects of different nature.

3. Some information may be ambiguous and their transformation into the
requires an active support from the programmer/designer.

4. The modules of the system described by these facts will be implemented
by single developers who must have a clear view of what is to be done.

5. The requirements management system should not only help the program-
mer to organize these large volumes of information, but should also give
him some help during the process of organizing facts.

We decided to use a unique approach of integrating the requirements man-

agement with source code. This approach is inspired by a homo-iconicity of
the languages from the Lisp family of programming languages. Our solution
is an embedded domain-specific language based on Clojure [18]. This DSL
wins the following for the analysts, designers and programmers:
- Editing source code is a primary activity every programmer undertakes on

every work-day. Putting the act of reading/writing the requirements into
source code increases the comfort of this – sometimes boring – activity.

- It also affects the designers and other people not involved directly in the
implementation phase, because it opens an effective channel of communi-
cation between – for instance – a system analyst and a coder; the analyst
writes a requirement directly in a compilation unit, the programmer reads
it and perform further steps to gain the required functionality.

- The presence of requirements in compilation units allows to interweave the
them (their definitions formally speaking) with source code snippets being
their direct implementations or implementation parts. This point is espe-
cially important because an act of locating requirements in pure (not in-
strumented with requirements or requirement-related tags) source code is
a tedious and hard to solve problem. Further works on this can be found in
[13, 14]1.

- A compilation unit keeping some requirements may be tracked and ma-
naged by a source management and revision control system, such as Git
[19]. An immediate consequence is the ability to manage the requirements

1 Very interesting works related to real-time systems programming, source-code verification

and requirements management in Ada programming language were presented in [15].

Prerequisites for Effective ...

27

versions, because a requirement change is a change in the compilation unit.
All version control system’s goodies, including the possible encryption
and the overall robustness of a distributed versioning system are there to
be used.

3 Summary

The key motivation behind this work was opening a way of finding ap-
proaches to managing the requirements appearing in such large software
projects as compilers for various programming languages. This paper may be
treated as an introduction to a full presentation of requirements management
solution in which the requirements and implementation information is placed
directly in the source code. We concentrated on describing a context in which
the requirements management process takes place, trying to present the most
interesting existing solutions, indicating the problems and opening a discus-
sion on what ways to follow in the future scientific research.

The main motivation for the conceptual creation and implementation of an
innovative requirements management system is the urge to control the com-
plexity (especially the non-accidental one) of large software projects, such as
the implementation of a static analyzer of a formally described programming
language or large modeling environments, such as the environments in which
some biological structures and behaviors could be modeled (e. g. human im-
mune system). The results of applying the requirements management system
in future will be presented in future papers.

References

1. Thomas M., 2003, The Modest Software Engineer, Proceedings ISADS 2003,
IEEE Press, pp. 169-174

2. Dardenne A., van Lamsweerde A., Fickas S., 1993, Goal-directed Requirements
Acquisition, Science of Computer Programming, Vol. 20, pp. 3-50

3. Davis A. M., Leffingwell D. A., 1995, Using Requirements Management to De-
livery of Higher Quality Applications, Rational Software Corporation

4. Ebert Ch., 1997, Dealing with nonfunctional requirements in large software
systems, Annals of Software Engineering 3 (1997), pp. 367-395

5. Zave P., 1997, Classification of Research Efforts in Requirements Engineering,
ACM Computing Surveys, 29(4), pp. 315-321

6. Nuseibeh B., Easterbrook S., 2000, Requirements engineering: a roadmap,
ICSE ’00 Proceedings of the Conference on The Future of Software Engineer-
ing, pp. 35-46

Grzanek K.

28

7. Zave P., Jackson M., Four dark corners of requirements engineering,1997,
ACM Transactions on Software Engineering and Methodology (TOSEM) Vo-
lume 6 Issue 1, Jan. 1997, pp. 1-30

8. Hofmann H.F., Lehner F., 2001, Requirements Engineering as a Success Factor
in Software Projects, IEEE Software Jul/Aug 2001, pp. 58-66

9. Ghanavati S., Amyot D., Peyton L., 2007, A Requirements Management
Framework for Privacy Compliance, Proc. of the 10th Workshop on Require-
ments Engineering (WER’07), pp. 149-159

10. Merz F., Sinz C., Post H., Gorges T., Kropf T., 2010, Abstract Testing: Con-
necting Source Code Verification with Requirements, 2010 Seventh International
Conference on the Quality of Information and Communications Technology
(QUATIC), pp. 89-96

11. Yue T., Briand L.C., Labiche Y., 2011, A systematic review of transformation
approaches between user requirements and analysis models, Requirements En-
gineering Volume 16 Issue 2, June 2011, pp. 75-99

12. Santos Soares M., Vrancken J., Verbraeck A., 2011, User requirements model-
ing and analysis of software-intensive systems, The Journal of Systems and
Software 84 (2011), pp. 328-339

13. Eisenbarth T., Koschke R., Simon D., 2003, Locating Features in Source Code,
IEEE Transactions on Software Engineering, pp. 210-224

14. Eaddy M., Aho A.V., Antoniol G., Gueheneuc Y.G., 2008, CERBERUS: Trac-
ing Requirements to Source Code Using Information Retrieval, Dynamic Analy-
sis, and Program Analysis, ICPC 2008. The 16th IEEE International Conference
on Program Comprehension, pp. 53-62

15. Ruiz J.F., Comar C., Moy Y., 2012, Source Code as the Key Artifact in Re-
quirement-Based Development: The Case of Ada 2012, Ada-Europe 2012,
Stockholm

16. Finkelstein A., Emmerich W., 2000, The future of requirements management
tools, In: Quirchmayr, G and Wagner, R and Wimmer, M, (eds.) Information
Systems in Public Administration and Law. Oesterreichische Computer Gesell-
schaft (Austrian Computer Society)

17. Hoffmann M., Kuhn N., Weber M., 2004, Requirements for requirements man-
agement tools, In Proceedings of the IEEE International Requirements Engineer-
ing Conference (RE’04), pp. 301-308

18. The Clojure Language Website, 2012, http://clojure.org
19. Git, Website 2012, http://git-scm.com/

29

CREATING VIRTUAL ENVIRONMENT FOR EDUCATIONAL
PURPOSES OF SCHOOLS AND UNIVERSITIES

Bartłomiej Kacprzak, Piotr Goetzen, Alina Marchlewska

IT Institute, Academy of Management, Lodz, Poland
bercik1337@gmail.com, (goetzen, amarchlewska)@swspiz.pl

Abstract
The objective of this paper is to present how to prepare and setup the virtual
machine environment on PC to improve speed, quality and overall feeling of
education process with reducing costs of hardware and software. This project is
a response to problem arising in most educational agencies and training centers.
It is a result of continuously growing amount of data to process in today’s
world. What is more, the range of subjects to teach widens everyday because of
market needing versatile specialist on every level. As a result, the students
nowadays have to get to know variety of systems, software and ideas in short
period of time.

Key words: virtualization, database, VMware, ESXi, Linux, education,
reducing costs, saving time

1 Introduction

As the years pass by, computer technologies and IT services are common
to people. IT market is in a need of good specialists to provide needed service.
Educational institutions try to cope with that need implementing constantly
growing range of specializations according to market valuation. This requires
wide range of hardware (different types of computers: screen sizes, CPU and
GPU power etc,), software (application for networking, graphic editing, audio
editing, video editing, system administration, software development) and op-
erating system configuration. All tasks performed by students are usually
located in different rooms because all mentioned above tasks require different
types of system access. If, for example, soon-to-be system administrator re-
configures NICs1 revoking access to Internet access on this station, this would
impact all other students using this station. Schools and universities are trying

1 Network Interface Card

Kacprzak B., Goetzen P., Marchlewska A.

30

to fix this problem by acquiring more workstations with specialized software
(e.g. DeepFreeze) witch results of rising costs.

Today's world is facing flood of information. Systems process more and
more data because of growing population and ease of access to Internet. In-
creasing number of customers forces service providers to add more servers
and storage, build new facilities and lease greater Internet connection. All that
results in greater electricity bills, more space to equip and higher maintenance
costs. Is it really the only path? Thankfully to virtualization - no. This tech-
nology can reduce hardware needed for specific job. Because of system con-
solidation, servers utilize most of system resources which leads to less hard-
ware needs[3].

So what actually is virtualization? To put it as simple as possible - it's me-
chanism that separates software (for instance whole operating system) from
hardware. Thanks to that "encapsulation" it is possible to run multiple OS's at
this same time in one physical machine.

The very concept of virtualization is almost half century old. First working
virtual machine was created in early 60’s. Even back at that time system were
fully functional when ran at the same time. Since that day, personal computers
gained great amount of computing power. Thanks to that, anyone can run
Virtual Machine (VM) on his PC. Over past few years significant growth of
virtualization market can be seen. Reason for that mostly is previously men-
tioned computing power. On software side of things first steps were made by
MIT students. They created system called CTSS (Compatible Time-Sharing
System) the ancestor of today's z/VM. PC's virtualization market was pushed
forward by VMware company. Started in 1998, their products really popula-
rized virtualization on small and medium sized corporations as well as home
oriented solutions[4].

2 Education

Different types of schools nowadays have different types of path for their
students with a lot of topics to go through[4,5,6]. Educational system is not
coherent. This can be easily observed by looking at computer rooms where
computer systems are dedicated usually for one task only. This results in
wasting system resources that could be used in better manner. This section of
paper will describe differences in educational programs and as a result of that
– different specifications of systems required for those tasks.

Creating Virtual Environment ...

31

2.1 Primary schools

During primary schools main topics of IT education are:
- Basics usage of computer
- Personalization of operating system
- File and folder operations
- Text editor usage [6]

2.2 High school and middle school

High schools and later on middle school implemented education of basic pro-
gramming languages. Those were most commonly PASCAL and BASIC.
Each student workstation had to be equipped with programming environment
(code editor, compiler, etc). Also basics of HTML are quite popular during
this time of education [7]

2.3 Universities

One of the least steps of education tree. There, IT knowledge is widened on
multiple specializations. Most common are:
- Computer architecture
- Programming
- Computer networking
- Operating system administration
- Computer graphics [9]

3 DESCRIBING THE PROBLEM

3.1 Cases

As mentioned before, differences in educational programs project on need
for specific hardware. The following cases will show some of examples of
these issues.

Case one:
For purpose of teaching Linux administration specific tasks, teachers require
numerous workstation and server configurations for teaching purposes. Those
machines have to be equipped with wide verity of peripherals. For some tasks
diskless station with 32MB of RAM will be enough. For others multicore
server with gigabytes of RAM is needed.

Kacprzak B., Goetzen P., Marchlewska A.

32

Case two:
In the need of graphic and video editing, students have to use very powerful
graphic stations, preferably with multicore CPU, reasonable or even multi-
processor GPU and the display of significant size for better editing.

Case three:
Programmers during their work spend most of time on reading documenta-
tion, analyzing existing code. That requires minimum system resources. Huge
CPU and IO utilization is required only to compile the program.

3.2 Preparations and tests

Several test were done. The main aim of tests is to measure the time
needed to copy the template of the system onto different locations:

- Test 1 Replication of one copy of the template
- Test 2 Copying the template between the physical disks
- Test 3 Double replication test
- Test 4 Parallel replication
- Test 5 Remote storage template copy
- Test 6 Final benchmark

For purpose of this paper, testing environment was created. It took the fol-

lowing steps to complete:
a. Hypervisor installation[1]
b. Hypervisor configuration[3]
c. Creating teacher’s system
d. Creating student’s template
e. Replication tests
f. Automation of replication process

VMware ESXi 4.0.0 build 208167 hypervisor software was chosen for this

project. The following hardware was used:
- CPU Intel Core 2 Quad Q8200 2,33GHz x 4
- Memory 6GB DDR2
- NIC Intel PRO 1000MT
- HDD Hitachi 250GB SATA2

After completing tasks mentioned in steps A up to D (those steps won’t be

discussed in this paper) system is ready for replication tests.

Creating Virtual Environment ...

33

In the presented example, we prepared the student’s system that takes up 5GB
of space on hard drive. When using build in ESXi file transfer tool time
needed for data transfer on 100 Mbps network is represented in table 1

Table 1. Calculations

5GB = 5*1024MB = 5120MB
5120MB + 20% = 6144MB

6144MB / 7MB/s = 877s

Assuming that speed of network link will reach 7MB/s it will take 877
seconds to transfer file to or from host with average encryption overhead of
20% [8]

Using build in tool for replicating images is easy to use and ready out of
the box, however it has some major disadvantages:
- In order to copy multiple instances from computer to ESXi server, all im-

ages should be already created on computer hard drive and grouped in one
folder. It is impossible to issue command multiplying one image n-times.

- During data transfer from/to ESXi host client computer network link has to
be up. It the link goes down it will result in transfer brake and will force
teacher to start over.

- When the tool is used from remote location with low bandwidth connec-
tion, time needed for transfer rises dramatically.

To solve these issues it is best to use SSH connection to ESXi host and

make template replications using /bin/ash shell. In order to enable this hidden
feature one must have physical access to the virtual machine host server. By
pressing ALT+F1 keys hidden console will be activated. Within the console
the command unsupported should be typed in (will not be visible) and after
pressing enter key, system will ask for root password. Providing these creden-
tials will result in instant access to shell (Figure 1). From there, /etc/inetd.conf
file must be edited. Inside the line containing #ssh has to be uncommented.

After ESXi reboots, SSH access on default port 22 will be accepting con-

nections.

Kacprzak B., Goetzen P., Marchlewska A.

34

Figure 1. Hidden ESXi shell

3.2.1 Test 1 Replication of one copy of the template
As calculations show in Table 1, time needed to replicate one copy of tem-

plate is 877 seconds. The following test will show how much time is needed
to copy the same amount of data using SSH within ESXi box to the same
physical hard drive.

Table 2. ssh copy

~ # cd /vmfs/volumes/datastore1/
/vmfs/volumes/4e4318fb-eaab2e19-f6d9-0002b3ee588a # time cp -r

szablon_sieciowcy/ sieciowcy1/

real 10m 40.19s
user 0m 53.46s

sys 0m 0.00s

Table 2 presents result of Test 1. Time needed for operation was signifi-

cantly reduced. Time savings gained by this solution will multiple n-times for
each replication.

3.2.2 Test 2 Copying the template between the physical disks
It is possible to connect another physical hard drive and perform copy be-

tween physical devices. To do that, after connecting hard drive to ESXi serv-
er, HDD has to be initiated and used as Datastore. In panel Configura-
tion>Storage>Add Storage newly added device has to be selected.

Datastore is now ready for use. Test 2 will copy template from old datas-

tore1 to newly created datastore2

Creating Virtual Environment ...

35

Table 3. Replication to another HDD

/vmfs/volumes/4e4318fb-eaab2e19-f6d9-0002b3ee588a # time cp -r
szablon_sieciowcy/ /vmfs/volumes/datastore2/sieciowcy3

real 6m 45.37s
user 0m 51.45s

sys 0m 0.00s

Executing Test 2 also reduced time needed for operation. With this setup re-
sults are even more vivid. Total time needed for copying the file was reduced
almost by half.

3.2.3 Replication automation
Automating this environment will provide multiple benefits:
- Reduce time wasted by human activity
- Huge workload can be scheduled for specific time (for instance at night)
- Scripts can be easily modified and tuned to new purposes

Scripts will be created in / path. They will be issued from within
/vmfs/volumes/datastore1. After creation, proper rights to execute have to be
granted by issuing chmod +x /skrypt*

Table 4. Content of skrypt1.sh

for x in `seq 1 2`; do cp -r szablon_sieciowcy
/vmfs/volumes/datastore1/sieciowcy$x; done

Table 5. Content of skrypt2.sh

for x in `seq 3 4`; do cp -r szablon_sieciowcy
/vmfs/volumes/datastore2/sieciowcy$x; done

3.2.4 Test 3 Double replication test
Test 3 will consist of two actions, first, it will replicate twice the template

to destination of datastore1, and after that replicate the same template to da-
tastore2 also two times. Commands and times of execution are show
in table 6.

Kacprzak B., Goetzen P., Marchlewska A.

36

Table 6. skrypt1.sh and skrypt2.sh execution times

time /skrypt1.sh; time /skrypt2.sh
real 14m 13.91s
user 0m 0.00s
sys 0m 0.00s
real 19m 27.32s
user 0m 0.00s
sys 0m 0.00s

3.2.5 Test 4 Parallel replication
It is possible, to perform tasks simultaneously. It can be achieved by send-

ing task to background using ampersand symbol at end of each command.

Table 7. Forking processes into background

/vmfs/volumes/4e4318fb-eaab2e19-f6d9-0002b3ee588a #
real 24m 32.21s
user 0m 0.00s
sys 0m 0.00s
/vmfs/volumes/4e4318fb-eaab2e19-f6d9-0002b3ee588a #
real 29m 48.87s
user 0m 0.00s
sys 0m 0.00s

As table 7 shows, concurrent replication needed more time to complete.

Reason for that is because of cheap hard drive used - performance drops sig-
nificantly when accessing similar area of data by two different threads. This is
a good proof of why those benchmarks should be performed before actually
making real production scripts.

3.2.6 Test 5 Remote storage template copy
Connecting remote resources such as NFS or iSCSI to ESXi host and using

them as a remote datastore is another possibility that VMware ESXi provides.
This option is very useful mainly because it skips limit of how many physical
devices could be connected to ESXi host. Remote resources can be accessed
from both intranet and Internet giving administrators variety options to choose
from.

Creating Virtual Environment ...

37

Figure 2. Remote iSCSI datastore

In this example remote iSCSI resource is used. It is located physically in
the same network. Connection link speed between ESXi and iSCSI hosts is
1000Mbit/s.

One has to create skrypt3.sh and tune it to perform the same replication ac-
tivity as shown in previous tests, except destination which, in this case, is
datastore3. Execution time is shown in table 8.

Table 8. Replication to remote iSCSI datastore

/vmfs/volumes/4e4318fb-eaab2e19-f6d9-0002b3ee588a # time
/skrypt3.sh

real 11m 11.94s
user 0m 0.00s

sys 0m 0.00s

Using remote destination is another time saver, and again the amount of
time saved is significant.

All tests above point that the most efficient copy operation can be achieved
by queuing tasks one after another.

3.2.7 Test 6 Final benchmark
Last test will simulate complete preparation of environment for new group

of students. For that following list of copies will be created:
- 9 copies on datastore1
- 9 copies on datastore2
- 19 copies on datastore3

Kacprzak B., Goetzen P., Marchlewska A.

38

Table 9. newclass.sh script

for x in `seq 11 20`; do cp -r szablon_sieciowcy

/vmfs/volumes/datastore1/sieciowcy$x; done

for x in `seq 21 30`; do cp -r szablon_sieciowcy

/vmfs/volumes/datastore2/sieciowcy$x; done

for x in `seq 31 50`; do cp -r szablon_sieciowcy
/vmfs/volumes/datastore3/sieciowcy$x; done

With all already created images current number of virtual systems will be

equal to 50. That number should be enough for most classes and laboratories.

Table 10. execution of newclass.sh

vmfs/volumes/4e4318fb-eaab2e19-f6d9-0002b3ee588a # time
/nowaklasa.sh

real 4h 48m 24s
user 0m 0.03s

sys 0m 0.00s

Table 10 shows execution time of newclass.sh script that replicated 39 ad-
ditional virtual machines (from 11 to 50). Those VMs are also ready to use
right after replication finishes. As mentioned before, number of already crated
systems should be enough to cover multiple groups of students for this sub-
ject.

Adding the system to the inventory is the last step after system replication.
After choosing option Browse Datastore on each DS, newly created folder
must be opened. Then, right-click on .vmx file and select Add to Inventory
(Figure 3). Later, name for imported VM should be chosen. (Figure 4)

Figure 3. Adding VM to inventory

Creating Virtual Environment ...

39

Figure 4. Naming new VM

4 Example usage

After powering on all systems SSH connection can be established. To
create new definition of SSH cluster, .cssh file must be edited. Portion of file
is presented in Table 11

Table 11. .cssh file

clusters = sieciowcy
sieciowcy = root@192.168.1.110 root@192.168.1.111
root@192.168.1.112 root@192.168.1.113 root@192.168.1.114
root@192.168.1.115 root@192.168.1.116 root@192.168.1.117
root@192.168.1.118 root@192.168.1.119 root@192.168.1.120
root@192.168.1.121 root@192.168.1.122 root@192.168.1.123
root@192.168.1.124 root@192.168.1.125 root@192.168.1.126
root@192.168.1.127 root@192.168.1.128 root@192.168.1.129
root@192.168.1.130 root@192.168.1.131 root@192.168.1.132
root@192.168.1.133 root@192.168.1.134 root@192.168.1.135
root@192.168.1.136 root@192.168.1.137 root@192.168.1.138
root@192.168.1.139 root@192.168.1.140

Kacprzak B., Goetzen P., Marchlewska A.

40

Next step is to physically connect local system to cluster by issuing cssh
sieciowcy --options "-i .ssh/uczen". After making connection, system will ask
about unknown certificate. It is necessary to accept it by typing “yes”. Con-
firming certificate by typing "yes" is displayed on Figure 5[2]

Figure 5. Initiation of SSH connection

4 Summary

Tests performed measured time needed for replication of exemplary sys-
tem. Measurements showed that slowest method of replication is the one
where source and destination datastores are the same. Slightly faster solutions
is that with different source and destination datastores. The fastest time for
task completion was the one that used remote datastores connected via iSCSI
protocol. It is worth to point out, that components used in those test were ra-
ther low-class, where low cost significantly impacts performance (but low
cost is the very important parameter for school budgets). Along with greater
budged comes more time saving. Also, given that values shown in examples

Creating Virtual Environment ...

41

are rather low, environment fulfills its task. Time needed for copying was
shrunk from 15 minutes down to 10 at worst scenario. If one needs to install
and configure the system from scratch it takes normally hours. Reducing the
installation to 10 minutes is significant. Ease of maintaining the infrastructure
will result not only in reducing time for preparing classroom for subject, but
also improve , thanks to system centralization , all housekeeping/cleanup tasks
such as removing unnecessary VMs. After having implemented this solution,
effects are noticed immediately on first use. Infrastructure size is no longer an
important factor in this scenario, because this solution benefits when used for
either 5 or 500 systems. Moreover, implementation brings more benefits de-
scribed below.

4.1 Financial benefits

One of the benefits of this system is reduction of financial costs. They de-
rive directly from reducing used hardware. Instead of constant hardware up-
grades in classrooms, which often are equipped with many computers it is
possible to upgrade just one central server.

Secondly, moving high load from clients to one centralized server results
in no more need for powerful hardware. For remote administration any type of
hardware will be enough (both Windows and Linux). What is more, all class-
room computers can be sold and superseded with brand new, cheap “Thin
Clients”. Another option is using embedded computers like Arduino or Rasp-
berry PI that were meant to be small and cheap minicomputers with super-low
power consumption reaching 2W - 5W at high load.

All that transformations lead into money savings. Electricity spending is
reduced right after system implementation.

4.2 Time benefits

Automation of tasks will have impact on time needed for preparing classes
environment and also reduce time needed for tasks during lectures and labs.
As effect teacher gains more time that could be spent for focusing on subject
instead of struggling with hardware problems

4.3 Management

Centralization of management simplifies control over infrastructure. It can
provide monitoring facilities for resources used, and prevent from over or
under utilization of equipment. Implementing additional monitoring tools and
logging solutions provide teacher ways to ensure the system security.

Kacprzak B., Goetzen P., Marchlewska A.

42

4.4 Flexibility

Flexibility of system in both hardware and software aspects guarantees
wide possibilities of further development. Possibility of main system reconfi-
guration is essential if system is going to be used for variety of subjects. Phys-
ical development of the server will benefit in greater savings mainly because
of consolidation of many VMs into one server and at the same time reduce
time needed to complete any operation. Figure 6 shows the chart of time
needed for copying 5GB virtual machine image related to disk speeds of dif-
ferent sort. With proper budged, time needed for copying can be reduced over
ten times. Multiplying it by n-times number of disks will result in even less
time needed for classroom preparation.

Figure 6. Disk performance

4.5 Meeting the objective

Environment created and presented in this paper meets all goals. Thanks to
minimal financial input needed to implement presented solution, ease of man-
agement, better hardware utilization and money savings coming from less
hardware usage were achieved. Time saved can be spent on subject/topic mat-
ter instead of wasting it on classroom preparation. Possibility of immediate
logon to student systems gives teacher ability to quickly diagnose and fix
problems, or mistakenly configured system. Also snapshot functionality can
reduce time needed for systems maintenance and provide safe and quick facil-
ity for testing new features. Placing multiple systems onto one server is also
useful when devices (classrooms) have to be moved from one place to anoth-
er. There is no need for moving tens or even hundreds of devices. All that is
reduced to moving one server. Any costs regarding hardware failures are also
minimalized. Periodic fan, PSU or disk swapping that before used to take

0
200
400
600

Tr
an

sf
er

 …
10 20 30 40 50 60 70 80 90 10

0
11

0
12

0
13

0

Time [s]

Time [s]

Creating Virtual Environment ...

43

significant amount of money are now independent regardless of how many
systems are moved to ESXi host. Possibility of remote access to VMs for both
teachers and students at home is another important feature.

4.6 Possibilities of reusing solution

Improving educational process in any type of educational facilities was
one of objectives of this environment. Universality of this solution gives pos-
sibility of using it in:
- companies, as a training environment. Useful especially for new em-

ployees. Facility similar to real production environment is best solution for
teaching newcomers, and yet because of not affecting the production serv-
ers any mistakes won't result in downtime or loss of data.

- companies, as testing and development environment. Possibility of creat-

ing one to one copy of production environment and testing there new func-
tionality is an great asset. It gives opportunity to completely test new fea-
tures before implementing them on production servers.

- home, as environment for learning networking and operating systems.

Functionality of this solution guarantees possibility of learning different
types of tasks. From basics of computer networking, analyzing how it
works, up to its reconfiguration using complicated IT solutions, e.g. using
HA and load balancing. All these tasks could be achieved before, but for a
cost of really expensive architectures.

- courses and presentations, as lab environment. In IT branch some prob-

lems have to be shown, or require specific methods of presentation used by
speaker (live presentation). In most cases regular slide presentation is not
enough especially if problem only occurs during specific scena-
rio/situation. Trying to replicate those situations in regular hotel network is
extremely difficult if not impossible. Earlier prepared environment can be
easily installed on ESXi host and presented on location, or remotely, in lab
environment, via Internet connection.

- applications, for testing them. Great number of systems running on ESXi

host and ability to simultaneously control them are very useful when simu-
lating high traffic or specific behaviors on application or website. Thanks
to this tool most common mistakes that come from improper resource es-
timation can be found even before passing software to tester group. As a
result software preparation should require less time during creation process
and what comes out of it will be resistant to some type of anomalies.

Kacprzak B., Goetzen P., Marchlewska A.

44

To wrap-up this paper, presented solution brings great amount of benefits,
that impact both time and quality of work and education environment. All that
can be achieved with almost no cost when using hardware already possessed,
or with minimal investment depending on solution purpose. Lack of invest-
ment when implementing presented solution won't impact on any possible
development of environment. At any time infrastructure can be upgraded to
more power full one without the need of VM reconfiguration. It is also possi-
ble to completely move all systems to brand new ESXi box without any loss
of data.

References

1. Lowe S., 2010, Wiley, VMware vSphere 4 Administration, , pages 21-58
2. Hertzog R.; Mas R., 2012, The Debian Administrator's Handbook, Freexian

SARL,
3. VMware Inc, 2011, ESXi Configuration Guide ESXi 4.0, VMware, Inc, pages

11-153
4. Kacprzak B, 2010, Wirtualizacja w systemach X86 X64 i z/9, SWSPIZ Diploma

work, pages 3,5
5. Sysło M.M.,, Myślenie komputacyjne. Informatyka dla wszystkich uczniów,

http://www.up.krakow.pl/ktime/symp2011/referaty2011/syslo. pdf, page 1
6. Stanecka B., Stanecki C. Program Nauczania Informatyka W Szkole Podstawo-

wej, http://www.stanpol.edu.pl/Pdf/Program-InformatykaSP. pdf, site 13
7. Filinowicz E., Program nauczania informatyki w gimnazjum, Informatyka dla

Ciebie, http://www.nowaera.pl/index.php?option=com_docman&
task=cat_view&gid=100036&Itemid= site 9

8. Goleń, P., EFS kontra TrueCrypt, czyli dlaczego szyfruję cały dysk
http://wampir.mroczna-zaloga.org/archives/377-efs-kontra-truecrypt-czyli-
dlaczego-szyfruje-caly-dysk.html

9. Strona Główna. Informacje dla wykładowców i Studentów,
http://wazniak.mimuw.edu.pl/

45

A TESTING ENVIRONMENT
FOR DISTRIBUTED SYSTEMS

Marcin Sztandarski, Grzegorz Sowa,
Piotr Goetzen, Alina Marchlewska

IT Institute, Academy of Management, Lodz, Poland
marcin.sztandarski@gmail.com, (gsowa, goetzen, amarchlewska)@swspiz.pl

Abstract
The article presents the basics of modern software testing theory. Testing
automation and the integration of testing into code writing will be examined in
detail, and concept of a testing environment for distributed systems will be
introduced.
Key words: distributed systems, software testing, testing automation,

test-driven development

1 Introduction

The architecture of modern software systems is complex as most systems
are distributed systems. Testing this type of system is a fairly complicated
process, due to the various system platforms on which the software is based,
the lack of the specification of the interfaces between system modules, and the
difficulty in preparing the whole environment of the distributed system.

Over time, a variety of tests and testing methods have appeared. Along
with the development of agile methodologies, testing has gone hand in hand
with software creation from its earliest stages.

2 Software testing theory

2.1 Quality management and software system testing

Institutions that choose distributed systems tend to be, for example, finan-
cial organisations or large logistics companies. These systems are expected to
function reliably and above all in line with their specifications. Quality man-
agement is essential, and one part of this is testing. In quality engineering

Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

46

interdisciplinary methods are used. Practical skills in the business processes
which the system is designed to serve are needed [2]. The testing is aimed at
component systems of varying granularity– individual classes, components
and the whole system are tested. [3]

Figure 1. Typical test range (on a basis of [3])

Test design generally includes the following steps:
− analysing and modelling the expected system behaviour
− designing test variants (entry and exit)
− designing test variants arising from structural analysis and other error de-

tection methods (e.g. heuristics)
− stating the expected results for each test variant.

Several models are used to cope with the complexity of the system. Each

model describes a particular type of test and has a particular aim.

A Testing Environment for ...

47

2.2 Test automation

Testing a large amount of software creates the need for test automation. An
automatic test systems allows entry data to be applied and for test results to be
verified. Such systems must be compatible with the interfaces and infrastruc-
ture of the system being tested. Test automation systems ensure that tests can
be carried out repeatedly. This facilitates regressive tests, for example, which
are generally carried out after the introduction of a repair or new function.
Although it is estimated that testers find only 15% of errors through auto-
mated tests [6], the most interesting attribute of this kind of test is its repeat-
ability, which allows the test procedure to be generated in a different hard-
ware platform, for example, or in another configuration.

2.3 Black and white box testing

There are two ways to design tests. If the designer only takes the entry and
exit specifications of the system into account, then the test is a black box test.
For example, testing a log-in box with two fields: “user” and “password” and
the “log in” button. The tester enters data according to the specifications of
the test into the appropriate fields, and then checks the effect of pressing the
button. In the case of this test, the internal data processing is not relevant –
only the exit data obtained for specific entry data are checked [10].

The opposite approach in known as white-box testing. Here, the internal
structure of the system is taken into account. The steering path routes in the
system being tested are analysed, and also solution implementation methods.
In the case of the log-in window, the internal components and the interaction
between them will be checked.

It is increasingly common for a distributed system to be rolled out by many
teams simultaneously, with solutions being delivered at different points in
time. Part of the system maybe created outside the main organisation. White-
box tests are designed only for the parts of the system, which are implemented
by the designer, whereas complex black-box test are the best means of quality
control in cases when we ourselves have not created the code.

2.4 Typical software development processes and testing

Generally speaking, the process of creating software is based on the trans-
lation of information, such as information about a business process, into
source code. This information is transferred during the following stages of
software creation [8]:

Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

48

− Needs establishment: the user (the sponsor of the project), working with an
analyst, defines what is expected of the system that is to be created. These
expectations are written down as the formal aims of the project.

− Analysis and description of goals: the details are agreed upon and the rela-
tionship between each goal is specified, taking into account priorities, af-
fordability, and any compromises.

− Creation of external specifications: system elements are described as
“black boxes”, in other words only interfaces and the interaction with the
user (and in the case of batch systems, entry and exit specifications) are
specified.

− Creation of the project structure system structure: the system is divided
into a series of elements of decreasing granularity. In other words, it is di-
vided into programs, components, etc, and interfaces are also defined.

− Functional specification of modules and their interfaces: the function of
each module, the relationships between modules and working guidelines
are established.

− Exact specification of each module, defining the interface and functional
elements.

− Creation of source code.

Incorrect transfer of information can occur at any of the above stages. In

order to eliminate mistakes, testing processes are used simultaneously with
each stage. Each testing stage is responsible for eliminating a particular kind
of mistake. The relationship between software creation processes and testing
processes is often represented as a “V” shape, where the series of stages asso-
ciated with creating the system are on the left side, and the corresponding tests
on the other. The “V” model, which is an extension of the typical waterfall
model, can be adapted to methods, where an iterant approach is used, as well
as to agile methodologies. In this case, the route through each stage is com-
pleted for each iteration. This approach improves the reliability of each stage
of system creation, as each particular type of mistake is eliminated as soon as
it might appear. Thus, when the external specification of the system is being
tested, functional testing is carried out rather than broad system testing. The
tester focuses on mistakes in functionality implementation, and not on, for
example, data processing efficiency.

The test structure along with the corresponding stages is as follows:
− Acceptance testing at the needs establishment stage. This type of test as-

sesses to what extent the system being tested corresponds to the expecta-
tions set out in the specification. Often this stage of testing is carried out
by the client’s own team of testers. Functional as well as non-functional
expectations are tested (e.g. efficiency).

A Testing Environment for ...

49

− Systems testing at the goals description stage. This kind of test is essential
due to the face that certain characteristics and functions of the system are
only visible when the software is treated as a whole. The difficulty of de-
signing this type of test is due to the fact that the document which de-
scribes the project aims is a general one, and so cannot provide specific
systems tests. Therefore, user documentation is also used when designing
systems tests.

There are several categories of system tests which focus only on specific

aspects of the system. They are not used in every system, however.
− Facility testing – which tests their compatibility with the established aims.
− Volume testing – which checks how the system copes with a large amount

of entry data.
− Stress testing - which assesses the system’s ability to process a large

amount of data in a short time.
− Usability testing – which checks the how user-friendly the interface is.
− Safety testing (data protection) checks, among other things, whether the

system is vulnerable to data leakage.
− Effectiveness testing assesses how the system copes with varying de-

mands, i.e.: whether the time it takes the system to produce an answer in a
given configuration matches the estimated times.

− Configuration testing checks the system in terms of its ability to cope with
different equipment configurations and environments (for example differ-
ent browsers in the case of internet applications.)

− Compatibility and conversion testing checks whether data can be con-
verted from one version of the system to another (for example, whether da-
ta can migrate from previous versions) or whether the system can work in
so-called compatibility mode.

− Installation procedure testing aims to identify mistakes in the software
installation process.

− Reliability testing establishes whether the system can carry out given func-
tions in particular conditions.

− Emergency function testing checks how resilient the system is in case of
breakdown. Most frequently, the average time it will take for the system to
recover after a breakdown is estimated (Mean Time To Recovery).

− Service testing involves checking to what extent service and conservation
of the system are possible. For example, the test establishes whether a sta-
tus report can be produced.

− Documentation testing aims to eliminate ambiguity, and the documentation
is assessed for completeness and detail, among other aspects.

Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

50

− External specification functional testing identifies any discrepancies be-
tween the expected behaviour of the system from the perspective of the us-
er and its actual behaviour.

The testing processes listed above are very much horizontal tests. In sub-

sequent development stages, tests at the level of individual units are used, as
follows:
− Integration testing aims to identify defects in interfaces and in the interac-

tion between units.
− Unit (module) testing.

2.5 Units testing

Program units are part of the program code, in the form of sub-programs,
classes or methods. Units consist of the smallest element of the system which
it is worthwhile testing. Initiating testing while writing a unit, for example a
class, has a host of benefits for the programmer. The specification of how the
code behaves in tests will significantly facilitate the analysis of the code by
other programmers. Refactorisation is safe – the programmer does not worry
that he or she will change the way the code works when changing the code,
creating a mistake [9]. It is important that the programmer is expected to take
care over the project: dividing the code into parts, according to which particu-
lar unit they are intended for. Unit tests which have had their connection with
other parts of the system removed can be carried out simultaneously.

Michael Feathers [4] outlines certain desirable characteristics of unit tests:
− Unit tests should work fast,
− Unit tests should not communicate with the database,
− Unit tests should not used network communication,
− Unit tests should not use the file system,
− The programmer cannot carry out additional preparation procedures in

order to carry out a unit test. Programmers sometimes introduce additional
connections into unit tests, for example a connection with the data base,
which turns the unit test into an integrative test.

Creating unit tests requires a well designed system, in which there are not

many connections between modules. This enables classes and methods to be
tested independently of each other. One method of isolating classes is to use
mock objects, which does, however, increase the complexity of the system.
Another method is appropriate system design and application, for example,
dependency injection [11].

A Testing Environment for ...

51

2.6 An outline of test-driven development

Test-driven development (TDD) is a software development system which
consists of three steps: creating a test, writing an appropriate code, refactorisa-
tion. This cycle is often known as the “red-green-refactor mantra” among
programmers who use TDD, which is due to the behaviour of TDD support
tools, in which red means that the test produced a negative result, and green
that it produced a positive result. The most important, seemingly simple rule
of TDD is the golden rule: never write a new functionality before you have
written a test, which produces a different result than expected (red).

Code writing using TDD consists of the following steps [4]:
1. Choosing the task and creating the test – the programmer starts writing a

testing code which specifies the desired behaviour of, for example, a cer-
tain method. Of course, the code is not compiled, as there is no implemen-
tation code.

2. In the next step (represented as red), the minimum implementation code
necessary for the particular class/method being tested is created, with the
aim of enabling compilation. The testing tools are marked as red.

3. Writing the correct code (represented as green) means implementing the
method in such a way, as to fulfil the requirements of the test. This step
lasts up until the point when the colour green appears.

4. Refactorisation, which means modifying the structure of the code that has
been tested without changing its functionality. These changes generally
aim to improve the code’s readability.

It is very important to note that steps 1-4 are carried out cyclically (even

multiple times an hour), whereas completing one cycle gives the programmer
immediate feedback. Another advantage of the TDD technique is that the
programmer focuses on one task – either code writing or refactorisation.
Moreover, applying this procedure fully in a project gives the programmer a
sense of security when introducing changes in the code later on, since the base
code is covered by tests. This technique is also suitable for legacy application.
Both bug fixes in existing code and changes introduced to existing functional-
ities should begin with test writing [1].

2.7 The effectiveness of test-driven development

The principal benefit of TDD is the assurance that any mistakes made dur-
ing the implementation of corrections or new functionalities will not introduce
hidden errors. The “golden rule of TDD” ensures that every functionality has
its own test. There is also a collection of regressive tests which allow the pro-
gram to be retested in order to identify newly introduced mistakes. Following

Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

52

the TDD rules generally leads to hundreds of tests a month and thousands of
tests a year being carried out, which in practice cover more than 90% of pro-
duction code [7]. Tests from which dependencies have been removed should
only take a few minutes, even if there are a few thousand of them. This means
that the programmer can check the effects of introducing a correction on the
rest of the code within this short time. Similarly with refactorisation, the pro-
grammer is not afraid of making changes even in “messy” code (for example
code in which abstractions are mixed, such as business rules and limited ac-
cess to data) since it is practically impossible to “break” the code. Unit tests
are also the most readily comprehensible documentation for programmers,
since they are written in the same language as the system is created in.

In 2007, Ron Jeffries and Grigori Melnik [5] presented the results of re-
search into Test-Driven Development techniques in the IT industry. Regard-
less of the benchmarks used, all the research results indicated that product
quality increased significantly.

2.8 The problem of units integration

During unit testing, units are tested in isolation from other elements, which
means that their code does not establish a connection with „the outside
world”. The units being tested do not communicate through the network, do
not save files, do not go beyond the boundaries of the process. Unit testing
should then be expanded into integrative testing. Various strategies are used to
integrate modules: growth integration, increasing and decreasing integration
[11]. The purpose of integrative testing is to identify defects in the interface
and in interactions between units. Units in complex systems (and also distrib-
uted systems) give access to the interface or carry out calls for methods made
accessible by other units and cannot be tested individually. It can be difficult
to test interaction, because certain parts of the system may not yet be accessi-
ble.

In order to resolve this, environmental elements which replace the sur-
rounding modules are used:
− The driver unit – calls to the tested unit are carried out form the level of

the driver.
− The stub unit – creates access to the interface of the unit, whose methods

are called up.

Figure 2 shows models of the configuration of test units for two examples

of distributed systems:
System I illustrates an imaginary configuration for complex tests where in-

teraction is taking place between three units (unit 3 has been replaced by an
element which gives access to the interface of unit 2.)

A Testing Environment for ...

53

System II is an integrative test which checks the interaction of module A
with the outside world. The driver of module A enables calling up the meth-
ods of interface A, whilst the element of module B enables carrying out calls
in the range of module B’s interface.

Figure 2. Model of configuration of units in integrative tests (complex texts) for ex-
amples of distributed systems. Source: own design.

3 System concept for testing distributed systems

3.1 High-level design architecture

High-level design describes components and their functions in the process
of testing distributed systems. Only significant aspects will be discussed here.
Figure 3 illustrates the main subsystems and their communications.

Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

54

Figure 3. A diagram of the testing environment architecture of distributed systems.
Source: own design.

3.2 The concept of test fixture

A test fixture is an agreed system status which ensures that test conditions
are repeatable. The test fixture is created by the test environment. In practice,
this is a service steered from the level of the status control agent. The test
fixture is created by the system being tested along with the adapter.

A Testing Environment for ...

55

3.3 What is required of the system being tested

In order for the system to be testable, two conditions must be met:
− The communication interface must be separated from the outer compo-

nents which the tested system communicates with
− The data adapter must be completed.

3.4 The role of components (of subsystems)

The runner subsystem of distributed testing is a component, which has the
function of communicating with the system being tested in order to initiate the
given command, forcing shut down of the testing procedure, or dealing with a
system failure.

The data adapter is a component which enables the entry data transferred
to the system to be read, the exit data to be stored and the system status to be
dumped.

The status, test and synchronisation controller is a subsystem responsible
for the co-ordination of the whole environment and synchronizing tests. Status
co-ordination involves sending commands to the status control agent. The
commands are sent according to the content of the test fixtures. The controller
also sends test signals to the runner controlling the system being tested.

The status control agent carries out commands to set up a service or an
imitation service in a particular way.

The remote unit test control agent.
System imitation is an external service, which the system being tested de-

pends on.
The repository of tests and test scenarios is an application which allows

test scenarios and reports of tests that have been carried out to be collected.

4 Case study

4.1 The concept of the Long Running Process Server framework

A high-level design test for a system which supports key business proc-
esses is described below. Testing this system depends on the availability of
many components and external systems.

The Long Running Process Server framework is a collection of compo-
nents and interfaces installed in business applications which demand service
for processes that are not synchronized. Processes that are not synchronized
allow the application to send a command for a long-term task to another ma-
chine, and then to continue functioning without waiting for the result. It is
also possible to finish the command process and memorize the task handler,

Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

56

which would make it possible to refer to the result after the next command
process has been initiated (or alternatively to delegate the reading of results to
another process).

4.2 Architecture of the Long Running Process Server framework

A description of the high-level components needs to be added to the
framework concept described below in order for the testing scenario to be
clear.

Figure 4. Architecture of the Long Running Process Server framework. Source: own
design.

The structure and organization of the server are as follows. The Long Run-
ning Process Server (executive server) is a service for the Windows operating
system. When the service is switched on/started, a configuration which identi-
fies plugins is loaded, with a task executive element. After the plugins are
loaded, the service process checks whether there are any tasks to be per-
formed in the queue, and if so begins to process them according to the allotted
task ordering algorithm. Both the executive parameters and the task process
exits are consolidated in line with process persistence; in this implementation
these are XML communications saved in the MS SQL Server base. The ser-

A Testing Environment for ...

57

vice also opens up the interface for communication with the broker process.
The executive server deals with all connections with the outside world for the
tasks requested.

The Long Running Process Service Client Broker is a service for the Win-
dows operating system which is a bridge between the Long Running Process
Server and client applications. In practice, the broker is dedicated to one par-
ticular application and only serves specific tasks. The component is made up
of the self-hosted Windows Communication Foundation Server, which serves
different kinds of communications with clients, and a functional part which
supports the loading of plugins for particular tasks. The broker is responsible
for passing on instructions, carrying out tasks with entrance instructions and
for answering questions about their status (and enabling results to be re-
corded.) The service makes the service accessible for client applications in the
form of Remote Procedure Call requests. The Long Running Process Server
can serve requests from many brokers and many applications, which means
that the brokers can be specialized in terms of function.

Client applications are processes which have a shorter life cycle than the
tasks requested by them. They are generally made up of a presentation layer
and a layer which is responsible for communication with the broker. The
presentation layer is built from component provided by the framework library.

4.3 Examples of business system testing scenarios, based on the Long
Running Process Server.

The scenarios described below are examples of integrated systems testing
which supports business processes in financial institutions offering clients
credit, credit cards and medical care/insurance. There is often a considerable
delay in processing tasks which require communication with outside systems,
due to business working conditions such as the need for a form to be ap-
proved, or the availability of outside services, and so these tasks are trans-
ferred to the Long Running Process Server by the Window application opera-
tor. The correct implementation of the business process completion can be
found in the BusinessTaskDisposal component.

Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

58

Figure 5. View of the BusinessTaskDisposal component. Source: own design.

The component that carries out tasks through the use of the Separated In-
terface model uses the potential of the external implementations of servicing
client account services (IAccountProvider, IAccountAmender) and data con-
solidation (IDataPersistence). This approach also allows the stubs of any ser-
vice to be used and focus tests to be carried out on only one service. The de-
pendence on IDataPersistence is due to the fact that the Long Running Process
Server consolidates entry data, exit data and the task status. Another important
dependency is the ProcessLogger class, which consolidates data related to
communication about the process status (this data is used to diagnose and
display the status on the client side). The testing environment configuration in
the case of each hub is made up of: the status control agent, the remote test
control agent and the imitation of certain dependent services, which the task
processes communicate with.

Smoke test scenario (preliminary test)
The preliminary test checks whether the system is ready for further, de-

tailed tests to be carried out.
Test scenario 1 – read status of all system hubs for the configuration that

has been loaded, expected result – status {OK} for each hub.
Test scenario 2 – load imitation of every dependency for BusinessTask-

Disposal, and then carry out the given remote functional test.

A Testing Environment for ...

59

Regressive test scenarios for given tasks
The aim of regressive tests is to ensure that no new mistakes have been in-

troduced when making changes in the software. This test consists of repeating
tests carried out before the changes were introduced.

Test scenario: load the regression test baseline set which contains the test
examples that were saved along with the test fixtures, run the automated tests,
check the results.

End-to-end test scenario
The aim of end-to-end tests is to test business transactions at the level of

their components, i.e. to ensure that all components are working together cor-
rectly and processing data correcting (at the level of the business process).

Test scenario for a single end-to-end test:

1. Set the hubs to a status with no imitations.
2. Carry out a preliminary test for each hub which is part of the process
3. Transfer data to be processed on the client side
4. Run the test
5. Check the processing results for each hub.

Test scenario for functional tests for business processes which are carried
out on the server side

During functional tests the implementation of the business function is
tested (a black-box test).

Test scenario:

1. Set the dependent service hubs
2. Set the service statuses
3. Load the entry data
4. Run the test
5. Compare the actual and expected exit data

5 Conclusion

5.1 Complexity

Testing distributed systems is complicated. The behaviour of the network
is to some extent unpredictable and preparing the testing environment is diffi-
cult. The test designer can only create an approximation of the conditions in
which the system is going to function. Carrying out tests related to subsystem
communication in distributed systems is often very expensive, because an
organization might only have one production environment serving mass

Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

60

communication with many clients at their disposal. Another problem is the
question of how to simulate the behaviour of hundreds or thousands of clients.
Moreover, network technologies are constantly being improved, while the life
cycle of distributed systems is relatively long, which means that these systems
have to function in a network environment which will be ten or more times
faster in a few years.

5.2 Safety

The role of safety testing in distributed systems is increasingly important.
The characteristics of distributed systems, their division into many subsys-
tems, leads to an increased risk of data leakage. Testing the safety of the sys-
tem as a whole at the end of the project, i.e. during the final integration, may
not be sufficient, since repairing problems at this stage could be very expen-
sive. Safety is a factor which should be clearly defined at the beginning of the
project when the client’s expectations of the system are set out. Safety testing
begins with checking it at the level of components, and ends with testing at
the level of the final integration and acceptance tests.

5.3 Distribution

The distribution of the project may extend beyond the boundaries of the
organization. Many companies benefit from outsourcing and off-shoring. The
quality of a system which has been prepared outside the organization must be
measured. The test designer has to deal with the difficulties of constantly ex-
panding acceptance tests which check both functional and non-functional
characteristics. One method is the introduction of iterative methodologies
which support such an approach. Creating distributed systems in a non-
iterative way (for example the waterfall model) is too risky, as problems be-
come apparent at the end – during the integration of the whole system.

5.4 Heterogeneity of environments

Designing tests for distributed systems requires a knowledge of the charac-
teristics of many environments: equipment platforms, operating systems, de-
buggers. Often distributed systems are built with the aim of adapting old sys-
tems to new business conditions. One example would be any kind of banking
system, which display part of their functionality in client systems like home
banking. Therefore, an architect designing tests for this kind of system needs
to know the characteristics of both the new and the old parts of the systems
(e.g. a banking system such as core).

A Testing Environment for ...

61

5.5 Automation

In order to automate tests for distributed systems, they need to be built in a
particular way. In practice, this means, for example, adding a thin interface
layer between the software containing the use interface and the layer below
(for example, the business layer). An approach called hexagonal architecture
is used, which means adding a range of adapters to the system which allow,
for example, interaction with the user to be replaced with a range of auto-
mated API calls.

5.6 Synchronisation

In distributed systems, tasks are carried out in parallel and sometimes the
processing cannot be done by a single machine. Tasks carried out on many
different machines influence each other constantly, which means that they
must be synchronized. This may cause errors that are difficult to diagnose, for
example the appearance of blockages (in the file system as well as in the data-
base).

Summary

The above attempt to design a testing environment for distributed systems
aimed to solve a particular problem – testing an asynchronistic task process-
ing server. The high-level design presented here was a very simplified one. A
detailed design for the status controller component, tests and synchronization
will be a considerable challenge. The flexibility of the system and ease of
testing will depend on this implementation. The way that the system deals
with unforeseen circumstances such as breakdowns, transaction cancellations
or the peculiarities/characteristics of network communication will be signifi-
cant.

References

1. Baley K., Belcham D., Manning 2010, Brownfield Application Development in
.NET, , p.105

2. Bereza-Jarociński B., Szomański B., Helion 2009, Inżynieria Oprogramowania.
Jak zapewnić jakość tworzonym aplikacjom, p. 69.

3. Binder V. R., WNT 2003, Testowanie systemów obiektowych, p. 48.
4. Feathers M., 2012, Working Effectively with Legacy Code,

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegac
yCode.pdf, downloaded Oct the 22

Sztandarski M., Sowa G., Goetzen P., Marchlewska A.

62

5. Jeffries R., Melnik G., 2007, IEEE SOFTWARE, Professionalism and Test-
Driven Development, May/June 2007, IEEE Computer Society, p. 28

6. Kaner C., Bach J., Pettichord B., Wiley 2002, Lessons Learned in Software
Testing: A Context-Driven Approach, p. 101.

7. Martin R., 2007, IEEE SOFTWARE, Professionalism and Test-Driven Devel-
opment, May/June 2007, IEEE Computer Society, p. 33.

8. Myers G., Sandler C., Badgett T., Thomas T., Helion 2005, Sztuka testowania
oprogramowania, p. 151.

9. Osherove R., 2009, The Art of Unit Testing, Manning, p. 55
10. Shaefer H., 2012, What a Tester Should Know, even After Midnight,

http://www.sjsi.org/webgears/files/sjsi/File/tester/tester_5.pdf, downloaded Oct
the 22, p. 40

11. Shore J., Warden S., Helion 2008, Agile Development. Filozofia programowania
zwinnego, p. 354

WAYS OF SELECTING INTERNAL PATTERNS
IN MULTILAYER PERCEPTRON NETWORK

Marcin Kolibabka1, Andrzej Cader1,
Agnieszka Siwocha1, Marcin Krupski2

1 Information Technology Institute,
University of Social Science, Lodz, Poland
(mkolibabka, acader, asiwocha)@spoleczna.pl

2 Department of Computer Science in Economics
Institute of Applied Economics and Informatics

Faculty of Economics and Sociology
University of Lodz, Poland

mkrupski@spoleczna.pl

Abstract
Creating and later learning one-way neural networks depends on many factors.
Selecting many of them has estimated and experimental character. The
suggested method is the Allows weakness of the influence of the not optimal
choice of the net structure, also speed and momentum values are less influential
in classic Back then Propagation Method. There are few modes of choosing
elements to use in Followed algorithm
Key words: neural networks, artificial intelligence, back propagation

1 Introduction

Simple to implement one-way, multi-layer, non-linear neural networks
called MLP (Multi-Layered Perceptron) [1] are conventional. For practical
use of the network, however, it is necessary to construct an appropriate net-
work structure as well as teaching it the proper reactions, relevant to the prob-
lem given.

The principles introduced in the late 80's of the twentieth century, describ-
ing the capabilities of neural networks - each limited continuous function can
be approximated with arbitrarily small error by a network with one hidden
layer [2,5], moreover, any function can be approximated with arbitrary accu-
racy by a network with two hidden layers [2,4] - and the development of algo-
rithm of error back propagation (English EBP - Error Back Propagation) [4]

Kolibabka M., Cader A., Siwocha A., Krupski M.

64

directly contributed to their prevalence, after earlier, long-term abandonment
of research on them. For many applications, they are also predisposed by the
relatively simple structure of the taught network, which combined with prop-
erly organized, parallel processing of signals allows for fast obtaining net-
work's reaction to change of the input parameters.

Classification tasks are one of the key issues that are being solved with the
usage of perceptron network. In the process of learning network „remembers”
the patterns from the training ensemble and generalizes their forms in order to
be able to recognize new input. This is obviously possible in the perfectly
extending learning process. In practical applications such optimal solutions
can be achieved by experimentation with learning parameters and network's
structure. Each limitation of the number of experiments is therefore beneficial.
Work developed method allows to reduce the impact of not-optimal network's
structure and increases the speed parameter range of values and learning mo-
mentum, at which one achieves beneficial learning results. This method is an
extension of the classic error back propagation method of enforcing a com-
mon standard for group of scales [6,7].

2 The selection of a multi-layer perceptron Network's structure

Selecting the proper number of layers and neurons for the usage of the
network in the problem given has highly experimental nature. Kolmogorov's
theorem for its theoretical nature has little practical significance, and even
then it can only refer to a network with a single output and moreover with
a linear activation function.

More significant in this regard is the statement:
Let's suppose that Φ is any continuous sigmoidal function. Then for every

continuous function f defined in the [0.1] n> = 2, and for any ε> 0, there
exists an integral number N and the ensemble of constants α i, θ i and in
j,i=1,..., N, j = 1, ..., n, such that the function

() ∑ ∑
= =









−Φ=

N

i

n

j
ijijin xwxxF

1 1
1,..., θα (1)

approximates the function f, ie,

|𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) − 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)| < 𝜀𝜀 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 }𝜖𝜖[0,1]𝑛𝑛

However, it also has its limitations. For example, it cannot be used in clas-
sification problems for more than two groups.

Apart from the problem of selecting the number of layers, the proper selec-
tion of number of neurons in each of them has great importance. Obviously,

Ways of Selecting Internal ...

65

too small number of neurons prevents network from learning, because the
network has too small information capacity then. Alternatively, one could
select too big network, but this solution has even several disadvantages. The
least troublesome is the extension of the learning time. The most impending
the usage of the network is the fact that the redundant network tends to „over-
learn”. It manifests by a loss of the ability to generalize knowledge, which
means that the network can recognize only the data from the training ensem-
ble in such case. It cannot properly identify the data, which are in scope of the
task domain, but have not been used during the learning phase.

The number of neurons hidden in the network allows to estimate the so-
called Vapnik- Chervonenkis dimension (VCdim) [8]. This dimension for the
ensemble of functions is defined as the maximum number of vectors, that can
be grouped in all possible ways, by using the function from this ensemble. For
the neural networks, it allows to estimate the generalization capabilities
through expressing the relationship between them, the amount of learning
samples, network's learning error and the generalization error. Unfortunately,
the assignation of this dimension is usually very difficult and the evaluation is
a very „imprecise”.

()nW NNVCNK lg12dim
2

2 +≤≤



 (2)

where:
K - the number of neurons in the hidden layer
N - size of the input
NW- the number of network scales
Nn- the number of networks neurons

In practice, this requires tedious testing networks with different amounts of
neurons anyway. Such testing requires a cyclic learning, testing, and remov-
ing the redundant scales. And even using the algorithms: Optimal Brain Dam-
age [9] and Optimal Brai n Surgeon to reduce the network's structure, does
not accelerate the process of obtaining its optimal working significantly.
Therefore, it would be beneficial to obtain such a learning process that would
allow the network with not optimal structure, to work as well as the optimally
structured network.

3 The method of enforcing the internal formulas

In methods from the error back propagation group the algorithm is based
on the assumption of minimizing the error E. This value is the sum of the
errors calculated for each training data vector. In such methods, a change in
the learning scale value depends directly only on its previous value. None of

Kolibabka M., Cader A., Siwocha A., Krupski M.

66

these changes is combined with the change of the other scale in the same ite-
ration, and even in different iterations this change is indirect through the value
of the inherited error.

In the method of enforcing internal formulas it has been proposed, in the
learning process, adding additional relations between selected scales [7].
These relations can be very simple. In the simplest case, it is the sum of
scales.

(3)

Where B is the ensemble of selected for the „interlock” scales. Interlock
word was used in quotation marks, because in reality one does not lock indi-
vidual value of scales, and only their sum. So in the process of learning the
different scales may change, however in the way that their sum remains con-
stant - change then depends also on changes of other scale values in the group.
Because of this in the solution space a hiperface is selected, on which the
solution is being searched.

Adding the condition caused the necessity to modify the redundancy defin-
ing the change of a single scale. This condition can be taken into account by
using the method of Lagrange'a multiplicators.

After the introduction of the condition [7] we get to solve the set of linear
equations:

(4)

Where 𝑤𝑤1,𝑖𝑖+1
𝑝𝑝 ,𝑤𝑤2,𝑖𝑖+1

𝑝𝑝 , … ,𝑤𝑤𝑛𝑛 ,𝑖𝑖+1
𝑝𝑝 are searched values of the scales in step

i+1, 𝑤𝑤1,𝑖𝑖+1,𝑤𝑤2,𝑖𝑖+1, … ,𝑤𝑤𝑛𝑛 ,𝑖𝑖+1, scale values resulting from the classical method
of error back propagation. The system can be easily solved, and the result
gives new scale values.

Blocking the sum of the scales is not only possible to use redundancy be-
tween the scales. Another type of relation between the scales can be their
product. In this case, however, to keep the flexibility and speed of resolution
one should be reduced with blocking the scales up to pair in the ensemble B:

.constw
Bw

=∑
∈

1,1,

1,21,2

1,11,1

1,1,21,1

++

++

++

+++

=−

=−

=−

=+++

in
p

in

i
p

i

i
p
i

p
in

p
i

p
i

ww

ww

ww

Cwww

λ

λ

λ





Ways of Selecting Internal ...

67

𝑤𝑤𝑖𝑖𝑘𝑘 ∗ 𝑤𝑤𝑗𝑗𝑘𝑘 = 𝐶𝐶𝑘𝑘 𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒 𝐵𝐵𝑘𝑘 = {𝑤𝑤𝑖𝑖𝑘𝑘 ,𝑤𝑤𝑗𝑗𝑘𝑘} (5)

k - the number of another interlock and j k(w and k, in j l) is scale grouping in
k-numbered relation. Therefore, in order to obtain new scale values in the next
iteration it is necessary to solve ensemble k system of three equations. In
every system there is one non-linear equation, the one with the interlock con-
dition. On the other hand, systems of equations themselves are independent
from one another, which is ensured by the divisibility of the ensembles Bk.

Interlock in the form of the sum allows for finding the minimum of hyper
planes which are parallel to each other, while a multiplicative relationship
changes the direction of the search, which may be advantageous for the tar-
gets set.

4 The ways of selecting the scales to „interlock” esembles

In the testing phase, various criteria of selecting the scales in the form of
both the interlock of the sum and the products were examined. For the addi-
tive relations the first method was the selection of scales with the highest ab-
solute value (maxAbs) [7], as the ones, that have quantitatively the greatest
opportunity to influence the result of the networks performance. Resulting
directly from the above method is the reverse method, which is the selection
of scales with a value as close as possible to zero (minAbs).

The third and fourth method include scales, the change of values of which
resulted in the largest and respectively the smallest, change of error on the
result of networks performance in relation to the scales values (maxRatio [7]
/ minRatio). The tests used a threshold value δ by which the scales were
changed, afterwards the full calculation was carried out for the learning data
without modifying the values of scales. Obtained at the end root-mean-square
error at the output of the network was divided by the value of the scale. One
selected to interlock the scales, for which the so obtained value was the high-
est, or in the opposite method, the smallest.

Another method, not algorithmic anymore, was a manual selection of
scales. It showed, that blocking all the scales in the neighboring neurons de-
creases the learning results.

For many „interlock” ensembles selection criteria were many groups re-
lated with one another, because in addition to the ranking of the groups algo-
rithms of division of the scales for more ensembles were also required. On the
other hand, it was necessary to examine into how many ensembles the se-
lected scales can be divided, which resulted in the need for parameterization

Kolibabka M., Cader A., Siwocha A., Krupski M.

68

of the scales finding including the number of groups algorithms. Selecting the
groups process consisted of several steps:
a. ranking arrangement the relative scales relative to criteria for one interlock

maxAbs / minAbs, maxRatio / minRatio
b. decision on the number of the groups and the number of scales in each

group
c. the way of selecting scales for each group

The first step is analogical to the one with the selection of one group. The

second determines the parameters with which we induce the third step algo-
rithm. In the second point were tested:
- the number of groups equal to the number of classification groups
- two groups
- the number of interlock ensembles a grade larger than the number classifi-

cation groups
- in the next stages of learning increasing or decreasing the number of

groups

Having the scales sorted out and information about the number of groups
constructed as a selection criteria of them into the respective ensembles. For
every above mentioned case, the described experiments were checked for
different amounts of scales in the interlock ensemble. Obviously in the pre-
sented method for product interlock, the number of scales in the group is stiff-
ly set to two.

Having sorted out the weight and the information about the amount of
groups a group selection criterion in the respective sets is constructed. These
criteria may be analogical to those described earlier for the single interlock
group, but a multiplicity of groups significantly broadens the possibilities of
choice. And so the basic criterion maxRatio can be modified in a number of
ways. The simplest way is to assign a certain amount of scales with the high-
est module to the first group, subsequent to the second and so on („main”
assignment). Because of this the most important, regarding the determined
criterion, scales are grouped together.

Another applied solution was assigning the scales to every group in order,
first with the highest module to the first group, the next one to the second and
so on. Thus, for example, with four groups into each group there will belong
scales from every fourth position from ordered by selected criterion structure
(„proportionate” assignment).

Another modification was such the selection of the groups, that within
a single interlock ensemble were the scales, which values of the applied crite-
rion are in balance. This means that the scales were paired up, the one with
the biggest and smallest value of the module („equilibrium” assignment).
Analogously, one can select the scales according to other criteria.

Ways of Selecting Internal ...

69

5 The results of tests on exemplary classifying networks

The tests on the method have been conducted on the networks with the op-
timized structure for the task given, as well as on the redundant structure. In
the first case, the difference between the non-interlock method, and the learn-
ing with enforcing the standard was not significant. However, at the stage of
searching for the optimal networks structure, learning with enforcing the stan-
dard, noticeably improved the efficiency of learning. Networks with to big
structure have decreased ability to classify data, absent in the learning ensem-
ble, so they generalize problem worse [6]. Blocking changes this situation.

In both algorithms with blocking the sum and the product, learning effec-
tiveness was highly dependent on the selection of the number of the groups,
the scales in the group and the method of their selection. The tests were con-
ducted in the following way: the network structure was being generated,
which was afterwards taught with the standard method, and the same network
with the same initial scales with enforcing the standard and with the same
parameters, such as learning speed and momentum, but with different me-
thods of enforcing the standard. The criterion of improvement was the num-
ber of identified samples from the test ensemble. Tests were conducted on the
problem of classification of irises and the „Zoo” classification (based on 16
features the animals were divided into 7 groups), the classification of the glass
(10 features, the classification into two groups). The test files contain respec-
tively 45, 30 and 24 samples. Experiments for each set of blocked scales were
repeated several times and the results provided in this thesis are the average of
several tests for each of the networks.

For all the three classification questions blocking the set containing more
than 90% of scales from the network grouped in one ensemble resulted in the
network almost completely ceased to learn (Table 1). No effect of the inter-
lock was observed with blocking about half of the scales from the network
with all the possible methods. The network was learning comparatively to the
absence of the interlock (Table 2).

Table 1. Number of well examined samples at the average for 15 learning attempts of
redundant network with different speed and momentum parameters for different me-

thods with the interlock of the majority of the scales in the network

 Irises Zoo Glass
Classic BP with

momentum
41.3 22.4 20.7

maxAbs 13.8 11.4 10.2
maxRatio 12.2 18.2 9.8

Kolibabka M., Cader A., Siwocha A., Krupski M.

70

Table 2. Number of well examined samples at the average for 15 learning attempts of
redundant network with different speed and momentum parameters, for different

methods with the interlock of the half of the scales in the network

 Irises Zoo Glass
Classic BP with

momentum
41.3 22.4 20.7

maxAbs 41.1 21.8 21.6
maxRatio 41.2 22.8 20.8

Another attempt was based on increasing the amount of blocked scales,

every 5000 iterations. With maxAbs approach no improvement of the net-
work was observed. However, with maxRatio and classifying network for the
problem of „Zoo” smaller influence of the learning speed selection on the
networks performance has been observed. As far as with the classical method
the number of identified samples ranged from 10 to 25 depending on the se-
lected learning speed n and the momentum than with the same parameters for
the enforcing the standard method the interval was from 20 to 25

This effect was observed as well in case when in the first step half of the
scales in the network were blocked by selecting them using the maxRatio
method, and in subsequent steps, their amount was reduced to half. This time
the benefit was observed in all three questions. The best results were obtained
by blocking half of the scales in the first learning cycle (selected by maxRatio
method), and in the next steps the ensemble was reduced by removing half of
the scales (Table 3). The achieved results were on average 8.7% better than
the conventional method.

Table 3. The number of correctly identified samples on average for 35 samples of
learning of the redundant network with different speed and momentum parameters,

for different methods with decreasing number of scales blocked
in the following stages

Irises
Stage

I

Irises
Stage

II

Irises
Stage

III

Zoo
Stage

I

Zoo
Stage

II

Zoo
Stage

III

Glass
Stage

I

Glass
Stage

II

Glass
Stage

III
Classic BP

with momen-
tum

20.1 35.7 41.6 11.7 18.4 22.9 13.8 19.5 21.9

maxAbs 19.4 33.1 41.1 10.4 18.4 21.8 12.4 19.6 21.6
maxRatio 20.9 35.8 41.9 15.8 19.1 26.2 12.1 21.0 22.7

The next stage of the study was the selection of more than one group. The

studies of this criterion for the sum had to be linked to choosing of the method
of selecting the scales for the inter locks ensemble.

Ways of Selecting Internal ...

71

It proved that with moving the scales using maxAbs method and learning
with many groups the criterion of scales selection has little importance. In the
extreme case the completely randomly selected scales to three groups in the
problem of irises achieved the results compatible with the best result from the
selection using algorithms. The mean values of results of the experiments with
maxAbs tables scheduling are shown in Table 4.

Table 4. The number of well-recognized average samples for 10 experiments of
learning of the redundant network with different speed and momentum parameters,
for different methods with blocking different numbers of groups of scales and max-

Abs criterion together with sum blocking

 Irises Zoo Glass
Classic BP with

momentum 40.2 23.1 21.4

maxAbs 2 gro-
ups 39.1 23.4 22.1

the number of
groups as the

number of net-
work outputs

40.2 22.7 20.1

Number of
groups 10 or

more
40.1 39.4 21.5

In case of selecting for interlocking the sum more than one group and ma-

xRatio scheduling criterion in some ways of scales selection to the ensemble
the results did not differ significantly from the selection of one group with the
exception of extreme cases, where on one hand the total discrepancy of the
network occurred followed for the problem of glass classification and almost
perfect performance of the network for the classification of irises. In the worst
case for the glass classification the network in 4 cases in the 15 experiments
did not give any correct classification. In the best experiment with the classi-
fication of irises the achieved result was equal to the performance of the op-
timal network. The overview of the results is shown in Table 5.

Kolibabka M., Cader A., Siwocha A., Krupski M.

72

Table 5. The number of well-defined at the average samples for 15 to learn a redun-
dant network with different speed and momentum parameters, for different methods
with blocking of different amounts of groups of scales with maxRatio criterion as

well as interlock of the sum

 main
 assignment

equilibrium
assignment

proportional
assignment

Irises
BP 41.2

Irises 2 Groups 40.1 40.9 40.5

Irises 3 Groups 40.0 44.1 41.5

Irises 30 Groups 39.2 42.9 40.5

Zoo
BP 22.9

Zoo
2 Groups 21.6 21.5 23.8

Zoo
7 Groups 21.1 23.2 21.4

Zoo
70 Groups 18.9 22.4 21.5

Glass
BP 21.1

Glass
2 Groups 12.1 21.5 20.2

Glass
10 Groups 19.6 14.2 22.3

6 Summary

The enforcing the internal standards method, regardless of its form can
improve the redundant networks chances in recognizing the data, which is not
part of the learning subject. Although the network continues to achieve worse
results than the optimal network, but they are very similar and in situations
where the quick reaction of the neutron network is needed without the seeking
of the optimal structure the described method can bring measurable time ben-
efits.

Ways of Selecting Internal ...

73

References

1. Tadeusiewicz R., 1993, Sieci neuronowe, Akademicka Oficyna Wydawnicza
RM, Warszawa.

2. Cybenko G., 1989, Approximation by Superpositions of a Sigmoidal Function,
Mathematics of Control, Signals, and Systems, Vol. 2 ,pp. 303–314.

3. Rutkowska D., Piliński M., Rutkowski L., 1997, Sieci neuronowe, algorytmy
genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, Warszawa.

4. Rumelhart D., Hinton G., Williams R., 1986, Learning Internal Representations
by Error Propagation. Parallel Distributed Processing, Vol.1, pp.318–362.

5. Hornik K., Stinchcombe M., White H., 1989, Multilayer feedforward networks
are universal approximators. Neural Networks, 2, pp. 359–366.

6. Rutkowski L., 2005, Metody i techniki sztucznej inteligencji, Wydawnictwo Na-
ukowe PWN, Warszawa.

7. Kolibabka M., Cader A., 2006, Metoda wymuszania wewnętrznych wzorców w
jednokierunkowej sieci klasyfikującej, Automatyka, 10, 3, pp. 497–502.

8. Haykin S., 1994, Neural networks: A Comprehensive Foundation, Macmikkan
College Publishing Company, New York.

9. Bishop Ch.M., 1995, Neural Networks for Pattern Recognition, Oxford Univer-
sity Press, Oxford, New York.

75

SPANISH SIGN LANGUAGE INTERPRETER
FOR MEXICAN LINGUISTICS

Arturo Pérez

University ITS Chapala at Mexico
aperez@itschapala.com

Abstract
We present here the first visual interface for a Mexican Spanish Sign Language
translator on its first development stage: sign-writing recognition. The software
was developed for the unique characteristics of Mexican linguistics and was
designed in order to use sentences or a sequence of signs in sign-writing system
which are decoded by the program and converted into a series of images with
movement that correspond to the Mexican sign language system. Using a
lexical, syntactic and semantic algorithms plus free software such as APIss
from Java, video converter software, data base manager like MySQL, Postgres
and SQlite, was possible to read and interpret the rich and complex Mexican
language. Our application for visual interface showed to be capable of reading
and reconstruct each sentence used for the interpreter and translate it into a high
definition video. The average time of video display vs number of sentences to
interpret, probed to be in linear relation with an average time of two seconds per
sentence. The software has overcome the problem of homonym words
frequently used in Spanish language and verb tense relation for each sentence,
special symbols such as #, %, $, etc. are still not recognized into the software.
Key words: Mexican Sign Language (MLS), spoken language translation, sign

animation, sintactic algorithm

1 Introduction

The Sign Language is a system employed to stablish communication be-
tween persons with dis-capability both auditive and phonetic. A person with
such dis-capability faces several obstacles while integrating into society. In
order to overcome such difficulties (between a regular person and a deaf or
deaf-mute person) Sign Language Interpreters softwares have been developed
to attend this imperative need of communication. In the last two decades there
has been more and more advances in visual interfaces for Sign Language In-
terpreters (Pardoa et al 2009, Halawani 2008, Dyng et al. 2008, Prada et al.
2008, Barra et al. 2007, Masakata 2006, Meurant 2004, Nyst 2004, Endbarg-
Pederson 2003, Stouke 1960). The development of a Sign Language Interface

Pérez A.

76

(SLI) strongly depends on the country where the Sign Language is used since
not only the SLI is variable within different countries but also each country
has its own characteristics for their official languages. It is well known that
Mexico uses Spanish as its official language, however, the mexican linguistics
(ML’s) differ abruptly between the Spanish used in other countries such as
Spain for example or the kind Spanish linguistics used in south American
countries such as Colombia. This is why on the present date there are still
many issues and misunderstandings towards persons who have a knoledge os
Spanish different than the mexican linguistics and use it triyng to communi-
cate in Mexico. Hence, translating Mexican text into Mexican Sign Language
(MSL) requires a unique and special knowledge within this characteristic
language. SLI’s for Spanish language have been already produce for Rodri-
guez (1991), Prada et al.(2008) and Pardoa et al (2009), all of these works
were produced only for European spanish linguistics and use 3D avatar tech-
nology to translate text into SL. To the date the are no works related to a Mex-
ican Sign Language Interface (MSLI).

Producing a low cost software for Mexican language has been 47 a priority
in Mexico ever since 2006, Mobil hardware devices have been created as SL
Interpreter (Leybo´on et al. 2006), nevertheless, the software applied to this
new mobil device was inefficient to decoding ML’s, the system does not ac-
counts for different hand positions, place of the hand gesture, hand direction
and most important: face expression, which is one of the prevailing factors for
a deaf-mute communication, since emotional expression plays a decisive fac-
tor on add meaning to each prhase for deaf-mutes (private communication
Desarrollo Integral de la Familia, DIF, Jalisco).

This device (Leybo´on et al. 2006) was too robust and expensive for mass
production. The consequences of not having such tools for deaf and deaf-mute
persons has created an enormous incapacity of communication among the
society added with discrimination factors towards the person with such dis-
capability.

Another factor to be taken into account at the time of creating a new type
of SLI, points at the unique cultural characteristics present in each country
and then, with different priority of basic needs. The tools developed for our
MSLI originate on the basis of two main priorities for mexican society: (a) the
need to communicate from one person to another in order to obtain and pro-
vide one or more services and (b) the need of the person with a dis-capability
to have a meaningful response to this communication. On the latter issue,
mexican persons with discapability find it more meaningful to interact with a
video image that can show up a sensible emotion than a 3D avatar.

While 3D avatars can indeed be constructed to represent an emotion while
displaying, it has been prooved for local experts on SL (Desarrollo Integral
para la Familia, Jalisco, private communication) that Mexicans do not relate
well with virtual images while trying to communicate a feeling or necessity.

Ways of Selecting Internal ...

77

At the same time we do not discriminate the advantage of having 3D avatars
for the case of simple written instructions or web page translation in a human-
machine or in a more general perspective: human-object interpretation, here,
Prada et al. (2008) offers the best deal for the interaction when communica-
tion 74 between people it is not a prime manner or can be avoided.

As an overall picture, the development of the MSLI does not involves any
new relevant work in the rea of signal processing, the algorithms used in this
work remain the same known at date, however, this is a work that focuses on
the development area of engenieering, meaning a new practical and inovative
tool devoloped to meet current social needs in the mexican society. The out-
line of this paper is presented as follows: section 2 describes the material and
methodology employed inorder to explain the differences of an SLI for mex-
ican language.

2 Methodology

In order to have an appropriate translation from speech transcriptions into
SL it is necessary to have a parallel corpus institution to fit the translation
models, test them, evaluate them and have them corrected in each phase of the
process. In our case, the development of our MSLI was performed with the
aid of a well founded federal institution: Desarrollo Integral para la Familia de
Jalisco (DIF, Jalisco), which is a solid foundation institution in Mexico dedi-
cated to aid persons with this type of discapability (among other functions in
its primary activities). DIF, Jalisco, provided us with the unique opportunity
to work with several experts (making a total group of 8 instructors for MSL)
in order to test and apply the MSLInwith their respective students. This ad-
vantage gave us the opportunity to attend to the basic and real needs for a deaf
or deaf-mute person in our society.

At the time of working with this corpus it was noticed that a 3D avatar
would not be helpful at adressing person-person translations, where, a 3D
avatar is more suitable to adress a human-object translations in a good feasible
way. A mayor emphasis was pointed from DIF Jalisco over to a deaf-mute
person having a real meaningful communication, hence, the need of a consis-
tent translating system involving human facial expression. In this manner,
itwas choosen the use of interactive videos as the apropiate way 99 of provid-
ing such answer.

Pérez A.

78

Table 1. Software and Hardware

Employed software Employed Hardware Sampled Group
APIss (Java) video camera MSL students

 (7 children)
video converter software MSL teachers (3 adults)

data base manager
MySQL

keyword

Postgres screen
SQlite

The development of the platform was divided into four main stages: cha-

racter recognition modulus, the syntactic modulus, the semantic modulus and
the syntax modulus, these stages explain a sufficient coordinated method and
a good efficiency degree of quality.

Figure 1. From left to right: (a) SLI Man window. (b) Interpreter screen, (c) Intro-
duced sentence for SLI. The window of the SLI contains a text field were the sentence
is introduced, this sentence must be written in simple tenses, the system accepts lower

and upper case text.

The first stage (Figures 1,2) is the character recognition process performed
with a lexical algorithm. The design of our lexical algorithm consist on a
double buffer compiler system. For the double buffer system we have taken
the couple used by Aho et al.1990.

Ways of Selecting Internal ...

79

Figure 2. First type of simple sentence, greeting.

The lexical analysis consists on the identification of the word or sentence
and the elimination of not usable words for the MSL. Within this process the
text to be translated is first captured on screen using a basic keyboard. After-
wards, the system indicates to the user if any invalid character has been typed,
the invalid characters in this stage are #, %,¯ , $, ,´ .¨ , etc. Once all characters
are read , the process of translation is allowed to continue only if all charac-
ters are recognized as valid characters. If the program finds one invalid cha-
racter the translation process stops and a warning message is displayed on
screen asking for the text to be retyped.

The second stage consists on the syntactic analysis. The algorithm applied
was the normal form of Chomsky’s algorithm (Chomsky 1965) this process
consists on the identification of the sentence structure: subject, predicate,
nouns, conjunctions, verbs, transitive verbs, intransitive verbs, complements,
adverbials, and the use of the tences on each verb in the sentence (present,
past, and future tences). During this process words like articles or conjuntions
in the sentence are eliminated (since sign language does not uses any of
those). Once the structure of the sentence is analyzed the process is allowed to
continue (Figures 3,4).

Pérez A.

80

Figure 3. Construction of a sentence using simple tenses.

Figure 4. From left to right: (a) Change of meaning in the word according to accentu-
ation sign. (b) current banner for unknown sign, (c) Sentence selection in the case of

homonym and homograph word. In (b) the SLI system is programed to detect ho-
monym words on the database by showing an current banner. The desired meaning

for the sentence or word is given to be chosen afterwards.

Figure 5. Changes in the meaning of a sentence depending on grammatical sign ap-
plied in the sentence.

Ways of Selecting Internal ...

81

Figure 6. Form left to right: (a) Error window. (b) Correction Screen, (c) Sentence.
The SLI system does not adtmits signs such as $,%,&, dot, colon. If the user types an

invalid character the systems displays a message on (a). The system can is able to
interpret no more than 12 digits and the structure of this should be in a continuous

form (without separations or blank spaces).

On the third stage we find the semantics analysis, this process uses the al-
gorithm to arrange the main sense of the sentence and eliminate any ambi-
guous senses. The main objective of this process is to identify either ho-
monym and homograph words (words that sound or are writen in a similar
way such as casa or caza, both existent on the mexican language and with
different meanings depending on the form they are aplied in each sentence).
This stage was completed at a 70% rate due to the complexity of the algo-
rithm, in order to complete this stage an emergent banner appears at the time
the user uses an homograph or homonime word, the banner shows up a menu
with options for different meanings and gives the user the option to choose the
more convenient one.

The last stage of the SLI is the generation of the sequence of images se-
lected from a re spective database of the sign language. Once the semantics is
produced, the syntax algorithm(tal de tal ao) simply uses the before structure
to select and display the appropriate video providing then the expected trans-
lation.

Pérez A.

82

3 Results

Our main results are described as presented in the methodology. In the first
stage we obtained the products of sentence typing as well as the voice recog-
nition process, it was mesured that this process took an average time of 2.5
seconds per recognized sentence. The average time of pattern recognition is
faster when the sentence is only written instead of spoken, this caveat waves
on the fact that voice capture processes are still not fully undestood and
keeped yet under development.

For the second stage of the MSLI it was possible to identify subject, predi-
cate and verb within the sentence’s grammar and distinguish between the
present, past or future tences for the verb (since most of SL does not uses verb
tences) at this point it was also possible to eliminate other words not used by
MSL such as conjunctions or intransitive verbs. As shown in Figure 4 the
recognition process of the SLI produces a screen for the video sequence and a
space at the bottom to show the written or spoken sentence. This typed sen-
tence either, follows or it is made to adapt to the grammatical order of Mex-
ican linguistics (noun, verb, predicate, et) in order to continue the translation.
The process aldo stops when a unknown symbol is typed or a unrecognized
word is spoken (such as caaa instead of casa).

Afterwards, the MSLI produces the correspondent video in the database
and differentiates similar sentences with similar words but different gramati-
cal puntuation (such as the spanish mexican accent, wich then adds a total
different meaning to the sentence).

The semantic modulus was completed at a 70% due to the complexity of
the algorithm dealing with homograph words. In order to solve complete such
inconvenience a recursive help banner was applied, every time the user types
an homograph word a graphic menu appears with several options to choose
from. Once the convenient option is chosen by the user the interpretation
process continues and the video is displayed. For the case of compound sen-
tences the SLI produces only a single video to show with the main ideas of the
compound sentence.

Within our results it was also created a small buffer during the process of
lexical analysis. This buffer is a thread manager created to storage words
which might be captured with voice recognition in the implementation of
future hardware device for sound recognition, not yet employed at this stage
of the SLI but left aside in order to focus only on this first stage of SLI, writ-
ten sentence recognition transformed into video image. Finally it was noted
that the quality of the final videos shows a small flash in between videos this
caveat is due to the multimedia java version employed for the development of
MSLI.

Ways of Selecting Internal ...

83

4 Discussion

The obtained results with the SLI were taken to DIF Jalisco and it was
proved how the general needs demanded at time were mostly covered. Re-
garding the employed algorithms used in this SLI: lexical, syntactic and se-
mantic, it is plausible to modify and generate the current syntactic and seman-
tic algorithms employed here as mentioned by Montero (2004) and Earley
(2001). As for the lexical algorithm it is now currently used the standard algo-
rithm of Tokens since it only consists on pattern recognition and there are not
new and specifics needs that reacquires to employ or perform any kind of
modification to it.

An important fact to be addressed is our use of video images instead of a
3D avatar such as the case of Prada et al. 2008 or Halawani 2008. This differ-
ence creates both advantages and disadvantages regarding to the area of appli-
cation for the SLI, the fact of having a 3D avatar results very convenient at the
time of simple interaction for instructions or guidelines using tools such as
web pages or any other human-machine interface, nevertheless the 3D avatar
faces limitations at the moment of human-human interactions where the oc-
currence of of facial gestures takes a mayor role to be taken into account in
order add meaning to the conversation for a person with this type of dis-
capability. Adding more detailed expression to this caveat has a high cost in
development but if such improvement could be achieved this type of tool on
the SLI could have a mayor impact on many areas of interaction for a deaf-
mute person.

The fact of a deaf-mute interacting with another person creates 186 a basic
need to receive some type of facial gesture in each sentence in order to have a
complete meaning of the conversation. In this case, the turn point comes into
crating a complex conversation, hence, having a complete sequence of images
to follow up such type of interaction, the use of video images faces such diffi-
culty and it is been left as future work.

During the process of translating a sentence into image the average time
resultant in each process (2 seconds) clearly indicates that each algorithm and
the employed process produces a reliable and consistent response that con-
nects with sufficient feasibility the continuity of the translation process as
such. The relation of the main variables with time (Figure 1) and between,
presents a linear correspondence. This linear correspondence is the mathemat-
ical proof of how each one of this variables has an independent role in the
process besides that the orthogonality between them it is also a way to de-
scribe the evolution of the system.

As for the flash seen between images for translated sentence it was noted
that such effect was due to operative system and its different versions. This
flaw is strongly seen for Windows Operative System (OS), specially, Win-
dows Vista and Windows 7. The effect greatly diminishes at Windows XP,

Pérez A.

84

while for Mac OS there is no appearance of such flash. We strongly believe
that such discontinuity is due to the Java Media Framework API for Windows
which most probably needs a new compatibility upgrade for the multimedia
version for Windows, which is not the case of the Mac OS.

The case of a SLI as a new tool for Mexican linguistics has the advantage
of being the first tool in this country capable of reproduce and translate simple
human-human conversations whereas it has been mention the appearance of
an photo-electric sensor for hand movement as a SLI tool (Leybon-Ibarra et
al. 2006) this particular software uses a photo-electric electrode system within
an adaptable glove with 3D avatar screen images to produce the translation,
nevertheless, the main limitation of such system consists in the incapability of
freedom of hand movement, this is: on hand direction, orientation, crossed or
bended finger positions and facial expression.

5 Conclusions

The new SLI for Mexican language was presented in this article, our main
results showed to be reliable and satisfactory within the selected proof sample
which were selected within the current needs of the actual MSL for Mexicans
and specially aimed at the expressed needs of DIF Jalisco. The program
showed to be capable of overcoming many MSL difficulties such as homo-
graph and homonym words to construct a sentence.

Our visual interface showed to be capable of reading and reconstruct each
sentence used for the interpreter and translate it into a high quality video. The
average time of video display vs number of sentences to interpret, took an
average time of 2 seconds per sentence and probed to behold within a linear
relation, which shows how both variable are independent between them
(hence able to describe different characteristics of the evolution of the sys-
tem).

Nevertheless, some caveats are still to be considered and investigated such
as the use of special symbols such as #, %, $, etc. which are still not recog-
nized into the software. The use of complex compound sentences are still yet
not recognized by the SLI and has to be taken into account for more elabo-
rated dialogues. More work for facial gesture recognition has to be done since
most of SL persons uses them to change the meaning of each sentence and it
is also a way to recognize the meaning of a phase used to communicate with
them. In the mean time, the use of SLI for an average conversation and aver-
age needs of a deaf-mute person with a regular non-sapient MSL person is
now covered and capable to perform its main task.

Ways of Selecting Internal ...

85

References

1. Aranda., B. E., 2008. La vulneracin de los derechos humanos de las personas
Sordas en Mxico. Comision Nacional de los Derechos Humanos, CNDH.

2. R. Barra, R. Crdoba, L.F. Haroa, F. Fernndeza, J. Ferreirosa, J.M. Lucasa, J.
Macas-Guarasab, J.M. Monteroa and J.M. Pardoa, Speech to sign language
translation system for Spanish, Aplied Soft Computing, 2008.

3. Comparn, J. J., 1999. Lengua Espaola I. Mxico: AMATE. Discapacidades, E. C.
La sor dera y la prdida de la capacidad auditiva., http://www.sitiodesordos.
com.ar/sordera.htm.

4. Ding Lilia, Modelling and recognition of the linguistic components in American
Sign Language, Aplied Soft Computing, 2008, 421, 105.

5. Dons, R., & Ortz, C., 2005, XXXV Simposio Internacional De La Sel:
http://www3.unileon.es/dp/dfh/SEL/actas.htm.

6. J. Earley, An Efficient Context-Free Parsing Algorithm, PhD tesis, University of
California, Berkeley, California, 1970, pp. 94-102, http://www-
2.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-55/lti/Courses/711/Class-notes/p94-
earley.pdf.

7. El Universal. 2006, : http://www.eluniversal.com.mx/articulos/30484.html.
8. Estrada, B., 2008, Sordos: www.sordos.org.mx/articulo.doc.
9. Galicia, S. N., 2000, Instituto Politcnico Nacional Centro de Investigacin en

Computacin Laboratorio de Lenguaje Natural,Anlisis sintctico:
http://www.gelbukh.com/Tesis/Sofia/tesisfinal.htm.

10. Garca, J. R., & Giner, B., 2007, Pearson, Prentice Hall.
11. Leybon I. J, Ramirez B. M.R., Picazo T. V., Photo-Electric Sensor Applied to

Hand Fingers Movement, Computacin y Sistemas, 2006, 10, 556.
12. Lodares, J. R., Aplicaciones Lexemticas a la Enseanza Del Espaol, 2009, Clarn,

Revista de Nueva Literatura, 78.
13. J. M. Montero M., Desarrollo de un Entorno para el Anlisis Sintctico de una

Lengua Natural, Universidad Politcnica de Madrid, Espaa, 2004,
http://lorien.die.upm.es/juancho/pfcs/JMMM/pfcjmmm.pdf.

14. Nuno, R. (1998). Correlatos neurofisiolgicos del lenguaje de senas en el nino
sordo. Proyeto de Investigacin.

15. J.M. Pardoa, J. Ferreirosa, V. Samaa, R. Barra-Chicotea, J.M. Lucasa, D. Sn-
chezb and A. Garcab Spoken Spanish generation from sign language, 2009, Ap-
lied Soft Computing, 123.

16. Dr.Sami M.Halawani, Arabic Sign Language Translation System On Mobile
Devices, International Journal of Computer Science and Network Security, 2008,
8, 1.

17. Suphattharachai Chomphan, Towards the Development of Speaker-Dependent
and Speaker-Independent Hidden Markov Model-Based Thai Speech Synthesis,
2009, Journal of Computer Science, 5, 905.

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CompatibilityLevel 1.4

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize false

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

